
BUILDING COOPERATIVE EMBODIED AGENTS
MODULARLY WITH LARGE LANGUAGE MODELS

ABSTRACT

In this work, we address challenging multi-agent cooperation problems with de-
centralized control, raw sensory observations, costly communication, and multi-
objective tasks instantiated in various embodied environments. While previous
research either presupposes a cost-free communication channel or relies on a cen-
tralized controller with shared observations, we harness the commonsense knowl-
edge, reasoning ability, language comprehension, and text generation prowess of
LLMs and seamlessly incorporate them into a cognitive-inspired modular frame-
work that integrates with perception, memory, and execution. Thus building a
Cooperative Embodied Language Agent CoELA, who can plan, communicate,
and cooperate with others to accomplish long-horizon tasks efficiently. Our ex-
periments on C-WAH and TDW-MAT demonstrate that CoELA driven by GPT-4
can surpass strong planning-based methods and exhibit emergent effective com-
munication. Though current Open LMs like LLAMA-2 still underperform, we
fine-tune a CoLLAMA with data collected with our agents and show how they can
achieve promising performance. We also conducted a user study for human-agent
interaction and discovered that CoELA communicating in natural language can earn
more trust and cooperate more effectively with humans. Our research underscores
the potential of LLMs for future research in multi-agent cooperation. Videos can
be found on the project website https://llm-co.github.io/CoELA/.

1 INTRODUCTION

Humans are adept at cooperating and communicating with others when solving complex tasks
(Woolley et al., 2010). Building embodied agents that can also engage in and assist humans in
everyday life is a valuable but challenging task, considering the complexity of perception, partial
observation, long-horizon planning, natural language communication, and so on (Deitke et al., 2022).

Large Language Models (LLMs) have exhibited remarkable capabilities across various domains,
implying their mastery of natural language understanding, dialogue generation, rich world knowledge,
and complex reasoning capability (OpenAI, 2023; Touvron et al., 2023; Brown et al., 2020; Bubeck
et al., 2023). Recent research has also demonstrated that LLMs can drive embodied agents for
single-agent tasks through zero-shot prompting for instruction following tasks (Huang et al., 2022a)
or few-shot prompting for more complex long-horizon tasks (Song et al., 2022). However, building
cooperative embodied agents to work with other agents or with humans under decentralized settings
with costly communication remains challenging and rarely explored, where they also need to have
strong abilities for cooperative planning and efficient communication. To date, it still remains unclear
whether LLMs have such abilities necessary for distributed embodied multi-agent cooperation.

Therefore, this paper aims to investigate how to leverage LLMs to build cooperative embodied agents
that can collaborate and efficiently communicate with other agents and humans to accomplish long-
horizon multi-objective tasks in a challenging decentralized setting with costly communication. To
this end, we focus on an embodied multi-agent setting as shown in Figure 1, where two decentralized
embodied agents have to cooperate to finish a multi-objective household task efficiently with complex
partial observation given. Specifically, communication in our setting takes time as in real life, so
the agents can’t simply keep free talking with each other. To succeed in this setting, agents must i)
perceive the observation to extract useful information, ii) maintain their memory about the world, the
task, and the others, iii) decide what and when to communicate for the best efficiency and iv) plan
collaboratively to reach the common goal.

Inspired by prior work in cognitive architectures (Laird, 2019), we present CoELA, a Cooperative
Embodied Language Agent, a cognitive architecture with a novel modular framework that utilizes
the rich world knowledge, strong reasoning ability and mastery natural language understanding
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“Hi, Bob. I
found 3 target objects 

in the kitchen, 
I remember

you were holding an 
empty container, 

can you come here to 
pick them up while I 
go to explore other 

rooms?”

“OK, thanks for your 
information, I'll go to 

transport them.”

Bob
(Human/AI) 

Alice
(LLM) 

Orange Apple

Apple Tea tray

Figure 1: A challenging multi-agent cooperation problem with decentralized control, raw sensory
observations, costly communication, and long-horizon multi-objective tasks.

and generation capability of LLMs, who plan and communicate with others to cooperatively solve
complex embodied tasks. Our framework consists of five modules, each to address a critical aspect of
successful multi-agent cooperation, including a Perception Module to perceive the observation and
extract useful information, a Memory Module mimicking human’s long-term memory to maintain the
agent’s understanding of both the physical environment and other agents, a Communication Module
to decide what to communicate utilizing the strong dialogue generation and understanding capability
of LLMs, a Planning Module to decide high-level plans including when to communicate considering
all the information available, and an Execution Module to execute the plan by generating primitive
actions using procedures stored in the memory module.

We instantiate our challenging setting and evaluate our framework on two embodied environments:
ThreeDWorld Multi-Agent Transport (TDW-MAT) and Communicative Watch-And-Help (C-WAH).
Our experimental results indicate that CoELA can perceive complex observations, reason about
the world and others’ state, communicate efficiently, and make long-horizon plans accordingly, as
showcased in Figure 1 where CoELA divide the labor with its partner through natural language
communication effectively. In particular, CoELA driven by GPT-4 can outperform strong planning-
based baselines by achieving more than 40% efficiency improvements and exhibiting emergent
efficient communication. Though Open LMs like LLAMA-2 still underperform, we utilize parameter-
efficient fine-tuning techniques LoRA (Hu et al., 2021) to train a CoLLAMA on few data collected
with our agents and gain promising performance. In the user study, we also discover that CoELA
communicating with humans in natural language can earn more trust. In sum, our contribution
includes:

• We formalized a challenging multi-agent embodied cooperation problem with decentralized control,
complex partial observation, costly communication, and long-horizon multi-objective tasks, and
instantiated it in two embodied environments: C-WAH and TDW-MAT.

• We presented a novel cognitive-inspired modular framework that utilizes the strong planning and
communication capability of the LLMs to build cooperative embodied agents CoELA, surpassing
strong planning-based methods.

• We conducted a user study to evaluate the possibility of achieving effective and trustworthy human-
AI cooperation using LLMs.

2 RELATED WORK

Multi-Agent Cooperation and Communication The field of multi-agent cooperation and commu-
nication has a long-standing history (Stone & Veloso, 2000). Many platforms have been proposed
for various multi-agent tasks (Lowe et al., 2017; Resnick et al., 2018; Shu & Tian, 2018; Jaderberg
et al., 2019; Samvelyan et al., 2019; Suarez et al., 2019; Baker et al., 2019; Bard et al., 2020). Other
works focused on methods that improves communication efficiency (Jiang & Lu, 2018; Das et al.,
2019; Wang et al., 2021; Wan et al., 2022), cooperation in visually rich domains (Jain et al., 2020), or
grounding communications in environments (Patel et al., 2021; Mandi et al., 2023; Narayan-Chen
et al., 2019). For embodied intelligence, Puig et al. (2021; 2023) explored the social perception
of the agents during their cooperation. However, these platforms either neglects communication
(Jaderberg et al., 2019; Samvelyan et al., 2019; Carroll et al., 2019; Puig et al., 2021; 2023), or use
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uninterpretable continuous vectors (Jiang & Lu, 2018; Das et al., 2019) or limited discrete sym-
bols (Lowe et al., 2017; Jaques et al., 2019; Jain et al., 2020; Patel et al., 2021; Resnick et al., 2018)
for communication. In contrast, we propose a more challenging setting where no presupposed free
communication channel exists, and distributed agents need to use natural language to communicate
efficiently with others, especially humans.

Language Agents Recently, numerous studies have explored language agents which use LLMs for
sequential decision-making (Yang et al., 2023; Wang et al., 2023b; Xi et al., 2023; Sumers et al.,
2023). Although LLMs still face challenges when solving complex reasoning problems (Bubeck et al.,
2023), a substantial body of work demonstrates their capacity to make plans (Sharma et al., 2021;
Raman et al., 2022; Pallagani et al., 2022; Gramopadhye & Szafir, 2022; Yuan et al., 2023; Li et al.,
2022; Wang et al., 2023d), especially in embodied environments (Li et al., 2023a; Padmakumar et al.,
2022; Kolve et al., 2017; Shridhar et al., 2020; Misra et al., 2018; Zhu et al., 2017; Brodeur et al.,
2017; Xia et al., 2018; Savva et al., 2019; Xiang et al., 2020; Jain et al., 2020; 2019). Specifically,
Liang et al. (2022); Song et al. (2022) used codes or few-shot prompting to directly generate plans,
Huang et al. (2022b) built an inner monologue with environment feedback to improve planning, Ahn
et al. (2022) combined robotic affordances and LLMs for grounded instruction following. There has
also been a line of work utilizing multiple LLMs to cooperate or debate with each other "in mind"
to strengthen the single agent’s capability to solve complex tasks (Li et al., 2023b; Du et al., 2023;
Wang et al., 2023c), different from their "free self-talk" setting, our decentralized language agents
must plan about when and what to communicate carefully since it’s costly in real-life. More recently,
Park et al. (2023) built an agent society using LLMs augmented with memories to simulate human
behavior. In contrast to the above, our work addresses a more challenging multi-agent cooperation
problem, characterized by decentralized control, complex observations, costly communication, and
long-horizon multi-objective tasks. We also study the capability of Open LMs like LLAMA-2 and
tine-tune a CoLLAMA using LoRA with data collected by our agents in embodied environments to
demonstrate their promising performance for building better cooperative embodied agents.

3 COOPERATIVE PLANNING UNDER DEC-POMDP-COM

Our setting can be defined as an extension of the decentralized partially observable Markov decision
process (DEC-POMDP) (Bernstein et al., 2002; Spaan et al., 2006; Goldman & Zilberstein, 2003),
which can be formalized by (n, S, {Σi}, {Ai}, {Oi}, T,G,R, γ, h), where n denotes the number
of agents; S is a finite set of states; Ai = AW

i ∪ AC
i is the action set for agent i, including

a finite set of world actions AW
i and a communication action AC

i to send a message σi ∈ Σi;
Oi = OW

i × OC
i is the observation set for agent i, including world observations OW

i the agent
receives through its sensors, and OC

i = Σ1 × · · · × Σn the set of possible messages the agent
can receive from any of its teammates; T (s, a, s′) = p(s′|s, a) is the joint transition model which
defines the probability that after taking joint action a ∈ A1 × · · · × An in s ∈ S, the new state
s′ ∈ S is achieved; G = {g1, · · · , gk} defines the task with several sub-goals for the agents to
finish; R(s, a, s′) = −c(a) +

∑k
i=1 1(s

′ = gi) − 1(s = gi) is the reward function to the team,
where c(a) is the cost for action a, and 1(·) checks if the sub-goal gi is satisfied in the world state
s; γ is the discount rate and h is the planning horizon. In the remainder of this paper, we focus on
noise-free broadcast communication and limit our discussion to two agents, though our methods and
experiments are generalizable to more than two agents.

We instantiate the problem with two decentralized intelligent embodied agents (including humans)
cooperating to accomplish a long-horizon rearrangement task (Batra et al., 2020) in an indoor multi-
room environment. The agents are capable of executing one of the actions from the action space
A = ANAV ∪ AINT ∪ ACOM, where ANAV includes navigation actions, AINT includes interaction
actions and ACOM includes a communication action with which the agent can send a message in
natural language to broadcast to others. The rearrangement task is defined with several predicates
gi with counts to be satisfied, such as ON(plate,dinnertable):2 representing a sub-task of
putting two plates onto the dinner table.
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Figure 2: An overview of CoELA. There are five key modules in our framework: (c) The Communi-
cation Module and (d) the Planning Module leverage LLMs to generate messages and make plans,
(b) The Memory Module stores the agent’s knowledge and experience about the world and others
in semantic, episodic and procedural memory respectively, (a) The Perception Module and (e) the
Execution Module interact directly with the external environment by perceiving raw observations and
generating primitive actions. More design details can be found in Appendix A.

4 BUILDING COOPERATIVE EMBODIED AGENTS MODULARLY WITH LLMS

4.1 FRAMEWORK OVERVIEW

Inspired by the cognitive architectures (Langley et al., 2009; Laird, 2019; 2022), we build CoELA,
a Cooperative Embodied Language Agent with novel modular framework integrating the strong
reasoning ability and language generation capability of LLMs. As shown in Figure 2, CoELA
consists of five key modules: (a) Perception, (b) Memory, (c) Communication, (d) Planning, and
(e) Execution. At each interaction step, CoELA first uses (a) Perception Module to perceive the
raw sensory observation received from the environment, then updates the (b) Memory Module with
extracted new information, which stores its knowledge and experience of the world and others.
CoELA tackles the challenge of efficient communication with a two-step method: first decide on
what to send, then decide whether to send this message or choose another plan by deliberately
using (c) The Communication Module to retrieve related information from (b) and utilize an LLM to
generate the best message to send "in mind" beforehand, then leverages (d) the Planning Module
driven by LLM with strong reasoning ability to make the decision on which plan to take given the
related information retrieved from (b) and available actions proposed regarding the current state.
The generated plan is then used to update (b2) the Episodic Memory. Finally, (e) the Execution
Module retrieves procedural knowledge stored in (b3) to turn the high-level plan into primitive actions
executable in the environment.

4.2 PERCEPTION MODULE

For embodied agents to be helpful in the real world, they have to perceive raw observations gained
through sensors and extract useful information for downstream higher-order reasoning. We incor-
porate the Perception Module to deal directly with the complex visual observation received from
the environment by training a Mask-RCNN (He et al., 2017) to predict the segmentation masks
from the RGB image, then build 3D point clouds using the RGB-D image, extract useful high-level
information such as the states of the key objects and build a local semantic map.

4.3 MEMORY MODULE

It’s of vital importance for an agent to maintain a memory of the knowledge and experience it has of
the world and others, we mimic human’s long-term memory (Atkinson & Shiffrin, 1968; Wang &
Laird, 2006; Nuxoll & Laird, 2012) and design Semantic memory, Episodic Memory, and Procedural
Memory for CoELA.

4



Semantic Memory stores CoELA’s knowledge about the world including a semantic map, the task
progress, the state of self, and the state of others. Each time a new observation is received and
perceived by the Perception Model, the Semantic Memory is updated accordingly. To be noticed,
CoELA’s knowledge about the world may not be accurate since other agents may interact with the
objects and change their states without its awareness. Dealing with imparities between the memory
and the description of the world from others adds even more challenges.

Episodic Memory stores CoELA’s experience about the past including the action history and dialogue
history. Each time CoELA executes a new action including sending out a message or receiving a new
message, the related information is added to the Episodic Memory.

Procedural Memory contains knowledge including how to carry out specific high-level plans in a
specific environment implemented in code and the neural models’ parameters.

4.4 COMMUNICATION MODULE

To deal with the what to send problem, we deliberately design a Communication Module utilizing the
strong free-form language generation capability of the LLMs to act as a message generator. To better
condition the LLMs on the cooperative task and avoid inefficient casual chatting, the Communication
Module first retrieves the related information from the Memory Module including the semantic map,
task progress, agent state, others state, and the action and dialogue history, then convert these into text
descriptions using templates, finally prompt the LLMs with the concatenation of Instruction Head,
Goal Description, State Description, Action History, and Dialogue History to generate the message
to send. To better constrain LLMs’ generated messages, a note at the end of the prompt is added and
two seed messages are appended at the beginning of the Dialogue History to elicit deserved effective
communication behavior. Detailed prompt design in Appendix. A.3.

4.5 PLANNING MODULE

CoELA needs a strong Planning Module to make decisions on which action to take utilizing all avail-
able information gathered and stored so far to maximize cooperation efficiency. While designing such
a module from scratch consumes large human expert efforts and is nearly impossible to generalize, we
utilize powerful LLMs directly as the Planning Module by first retrieving the related information from
the Memory Module and converting them into text descriptions as in the Communication Module,
then compile an Action List of all available high-level plans proposed according to the current state
and the procedural knowledge stored for the LLMs to make the choice, which formalization makes it
easier for the LLMs to concentrate on the reasoning and make an executable plan without any few-shot
demonstrations easily, finally prompting the LLMs with current information and the proposed Action
List to generate a high-level plan. We also use the zero-shot chain-of-thought prompting technique
introduced by Kojima et al. (2022) to encourage the LLMs to carry out more reasoning before giving
the final answer. More details can be found in Appendeix. A.4.

4.6 EXECUTION MODULE

As shown in (Deitke et al., 2022), solving challenging embodied tasks requires modular methods
to tackle the complexity of tasks. We found that while LLMs were effective at making high-level
plans, they were poor at making low-level controls, as also discussed in (Wu et al., 2023). Thus, to
enable effective and generalized cooperation decision-making in different environments, we design
an Execution Module to generate primitive actions to execute a given high-level plan robustly in a
specific environment, allowing the Planning Module to be generalizable and focus more on solving
the overall task with LLMs’ rich world knowledge and strong reasoning ability. Practically, this
design can also reduce the LLM inference time and is time-saving and economical. CoELA retrieves
the procedures in its Memory Module regarding the plan generated by the Planning Module and then
carries out the procedure with primitive actions suitable for the environment.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

ThreeDWorld Multi-Agent Transport (TDW-MAT) is a multi-agent embodied task extended from
the ThreeDWorld Transport Challenge (Gan et al., 2022) with more types of objects and containers,
more realistic object placements, and communication between agents supported, built on top of the
TDW platform (Gan et al., 2020), which is a general-purpose virtual world simulation platform. The
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RHP RHP + RHP RHP + CoELA CoELA + CoELA MAT*

GPT-4 LLAMA-2 CoLLAMA-2
TDW-MAT

Food 0.49 0.67(↑25%) 0.79(↑39%) 0.82(↑38%) 0.57(↑9%) 0.73(↑33%) /
Stuff 0.36 0.54(↑34%) 0.59(↑34%) 0.61(↑41%) 0.48(↑11%) 0.66(↑44%) /
Total 0.43 0.61(↑29%) 0.69(↑36%) 0.71(↑39%) 0.53(↑10%) 0.70(↑38%) /

TDW-MAT w/ Oracle Perception

Food 0.52 0.76(↑33%) 0.85(↑40%) 0.87(↑41%) 0.60(↓3%) 0.78(↑34%) 0.13(↓)
Stuff 0.49 0.74(↑34%) 0.77(↑35%) 0.83(↑41%) 0.63(↑19%) 0.81(↑38%) 0.17(↓)
Total 0.50 0.75(↑34%) 0.81(↑37%) 0.85(↑41%) 0.62(↑8%) 0.80(↑36%) 0.15(↓)

Table 1: Quantitative results on TDW-MAT. We report the average Transport Rate(Efficiency
Improvement) here over 5 runs for RHP and 1 run for CoELA due to cost constraints. *MAT uses
central observation and oracle perception. The best results are in bold. The best performance is
achieved when cooperating with CoELA.

agents are tasked to transport as many target objects as possible to the goal position with the help
of containers as tools. The agents receive ego-centric 512×512 RGB-D images as observation and
have an action space of low-level navigation control, interaction, and communication. We selected 6
scenes from the TDW-House dataset and sampled 2 out of the two types of tasks food and stuff in
each of the scenes, making a test set of 24 episodes, and instantiate the horizon h with 3000 frames.

Communicative Watch-And-Help (C-WAH) is extended from the Watch-And-Help Challenge (Puig
et al., 2021) built on a realistic multi-agent simulation platform, VirtualHome-Social (Puig et al.,
2018; 2021), where we focus more on cooperation ability and support communication between agents.
We conduct experiments under both symbolic and visual observation settings. The task is defined
as five types of common household activities and represented as various predicates with counts to
be satisfied. We sampled 2 tasks from each of the five types of activities to construct a test set of 10
episodes and instantiate the horizon h with 250 steps. More details can be found at Appendix. B.

Metrics We use the Transport Rate (TR), the fraction of the sub-goals satisfied on TDW-MAT, and
the Average Steps L taken to finish the task on C-WAH as main efficiency metrics respectively and
calculate Efficiency Improvement (EI) of cooperating with other agents as ∆M/M0, where ∆M
denotes the main efficiency metric difference, and M0 denotes the larger one of the main efficiency
metric for numerical stability.

5.2 BASELINES

MCTS-based Hierarchical Planner(MHP) is adopted from the strongest baseline in the original
Watch-And-Help Challenge, which is a Hierarchical Planner with a high-level planner based on
MCTS and a low-level planner based on regression planning (Korf, 1987).

Rule-based Hierarchical Planner(RHP) is adopted from the strong performing baseline in the
original ThreeDWorld Transport Challenge, which is a Hierarchical Planner with a high-level planner
based on heuristics rules and a low-level A-start-based planner to navigate with semantic map, using
Frontier Exploration strategy which randomly samples a way-point from an unexplored area as a
sub-goal for exploration.

Multi-Agent Transformer(MAT) is a MARL baseline that applies a centralized decision transformer
to generate actions from shared observations (Wen et al., 2022). To apply MAT in our setting, we
make the compromise to feed the oracle semantic map and the agent states as observation and stack
up to 50 frames as an RL step since TDW-MAT is too hard for it with long-horizon and sparse reward
signals. We train MAT on the training set with more details in Appendix. C.1.

Implementation Details. We train a Mask-RCNN on the training set for the Perception Module
and instantiate CoELA with the most powerful LLM GPT-4 from the OpenAI API1 with the default
parameter of temperature 0.7, top-p 1, and max tokens 256 unless other stated. We also conduct
experiments with Open LLM LLAMA-2-13b-chat (Touvron et al., 2023) and fine-tune a CoLLAMA
with LoRA (Hu et al., 2021) on a small set of human-filtered high-quality trajectory data collected
with our agents. More details are deferred to the Appendix. C.3.

5.3 RESULTS

5.3.1 COLLABORATING WITH AI AGENTS

1Our main experiments are done between 2023.9.1-2023.9.28 and 2023.5.1-2023.5.16
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Figure 3: Example cooperative behaviors demonstrating CoELA can communicate effectively and
are good cooperators.

Symbolic Obs Visual Obs

MHP 111 141

MHP + MHP 75(↑33%) 103(↑26%)
MHP + CoELA 59(↑45%) 94(↑34%)
CoELA + CoELA 57(↑49%) 92(↑34%)

Table 2: Quantitative results on C-WAH. We
report the average steps(Efficiency Improvement)
here over 5 runs for MHP and 1 run for CoELA
due to cost constraints. The best performance is
achieved when cooperating with CoELA.

CoELA cooperates better with baseline agent
As shown in Table 1, compared with RHP doing
the task alone, cooperating with CoELA leads
to a higher TR and EI than cooperating with
another RHP (0.69(36%) v.s. 0.61(29%)), even
without any knowledge of the inner working
mechanism of others, showing CoELA can rea-
son about the other agent’s state well without
hand-designed heuristics. From Table 2, we can
observe the same performance boost of cooper-
ating with CoELA on C-WAH of 45% compared
to 33% of cooperating with the same MHP.

CoLLAMA is in competence with GPT-4 to drive CoELA Two CoELA cooperate together can
further boost the TR to 0.71 and 0.85 on TDW-MAT without and with Oracle Perception. While
replacing GPT-4 with open Model LLAMA-2 leads to a significant performance drop, our fine-tuned
CoLLAMA can gain a competitive performance of 0.70 TR and even surpass GPT-4 on the subtask of
Stuff where GPT-4 performs not so well, showing the promising future of fine-tuning open LLMs with
our proposed framework on embodied environments for even better cooperative embodied agents.

CoELA exhibit efficient communication and effective cooperation behavior To better understand
the essential factors for effective cooperation, we conduct a qualitative analysis of the agents’
behaviors exhibited in our experiments and identified several cooperative behaviors: CoELA share
progress and information with others, know when to request help and can respond to others’ requests,
can adapt plans considering others and knows when not to communicate, as shown in Figure 3. We
discuss some here and the remaining in the Appendix. C.4.

5.3.2 COLLABORATING WITH HUMANS

It’s our ultimate goal to build agents that can cooperate with humans, a user study is important. We
conducted human experiments on the C-WAH where the agent Alice is controlled by real humans.

We recruited 8 human subjects to perform the experiments under four scenarios: cooperating with the
MHP2, CoELA, CoELA w/o communication, and doing the task alone. Subjects have access to the
same observation and action space as the agents, they can click on visible objects and select actions
to interact with them, including navigation to each room and communication through a chat box. We
gave each subject a tutorial and they had the chance to get familiar with the interface in a few pilot
trials. We evaluate the same 10 tasks as in previous experiments and each task was performed by at

2A template communication is used here to study humans’ communication preference, details in Appendix E
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Figure 4: Human experiments results (a) The Average steps when collaborating with Humans and
agents. (b) Subjective Rating Humans give when cooperating with different agents. Humans trust
CoELA communicating in natural language more and cooperate more efficiently with them. Ablation
results (c) The light-colored portions represent the number of steps used for communication. The
Memory Module and a strong LLM for the Planning Module are important, while the Communication
Module matters more when cooperating with humans.

least 2 subjects, making 80 trials in total. We made sure each subject do 10 trials with at least two
trials under each scenario. After each trial including a baseline to cooperate with, we asked subjects
to rate the agent they just cooperated with on a 7-point Likert Scale based on three criteria adapted
from Puig et al. (2021): (i) How effective do you think of your communication with the other agent
Bob? Did it understand your message and/or share useful information with you? (ii) How helpful do
you find the other agent Bob? Did it help you achieve the goal faster? (iii) How much do you trust
the other agent Bob? Would you feel safe doing the task with it, or you rather do the task alone?

As we can see in Figure 4a, when cooperating with humans, CoELA still performs better than MHP,
and when communication is unable, CoELA w/o communication encounters a performance drop.
As reported in Figure 4b, we also observe that humans would trust the agents more if they can
communicate with humans (trust score of 6.3 v.s. 4.7 for CoELA v.s CoELA w/o communication,
p=0.0003 over the t-test), and therefore achieves better cooperation. Compared with MHP using
template language to communicate, humans prefer to collaborate with CoELA who communicates
in natural language and can understand and respond to Human dialogues. We show an effective
communication example in Figure 10, where the human first shares his progress with CoELA and
suggests a labor division, CoELA understands and responds with its future plan as well, resulting in a
perfect division of the exploration trajectory. These results imply promising futures for leveraging
LLMs to build cooperative embodied agents that can successfully work with humans.

5.4 ANALYSIS

Do we need a strong LLM for the Planning and Communication Module? As shown in Figure 4c,
when we replace GPT-4 with GPT-3.5 to drive CoELA, the agents would need more steps to finish the
task. GPT-3.5 makes more reasoning errors about the state and therefore generates more implausible
plans, which leads CoELA to spend more time finishing the task. GPT-3.5 also tends to generate
unuseful messages more often than GPT-4. The performance gap can be attributed to more advanced
reasoning and Theory of Mind abilities of GPT-4, which is also observed by Bubeck et al. (2023).

Is the communication effective? Though communication still fails in some cases, as shown
in Figure 3, our agent exhibits effective communication behaviors, such as sharing information,
requesting help, responding to requests, and knowing when not to communicate. More importantly,
natural language communication provides us with a lens to understand the decision-making of the
agents and could lead to better cooperation between humans and AI (as shown in section 5.3.2). We
did not observe a significant performance drop when disabling communication among AI agents
(as shown in Figure 4c), because carrying out efficient communication in our setting is extremely
challenging as communication costs time, requiring agents to model others accurately and understand
the ambiguity of the natural language itself, which current LLMs still can not master robustly.

Is the Memory Module and Execution Module effective? As shown in Figure 4c, the steps needed
to finish the task for the agent with no Memory Module nearly double, showing the importance of
the Memory Module to store and update the knowledge and experience of the scene and the others.
We also tried to remove the Execution Module and let the Planning Module make low-level control
directly at every step. However, this slows down the inference process largely and all our trials
perform poorly and struggle to finish any task.
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Figure 5: Failure cases on TDW-MAT. (a) The Agent fails to reason the other one is already putting
the burger into the container. (b) The LLM counts the number of the remaining target objects wrong.

5.5 FAILURE CASES AND LIMITATIONS OF LLM
Though CoELA built with sota LLMs is effective and has achieved impressive results, we find that
the agent still falls short in several essential capabilities. We provide an in-depth analysis of its
limitations and share some insights on designing better cooperative embodied agents for future work.

Limited usage of 3D spatial information. CoELA did not incorporate the spatial information
of objects and rooms into consideration due to the challenge of effectively introducing the spatial
information to pure text language models. This may cause the agents to come up with a semantic
sound exploration plan which is actually time-consuming. Work on multi-modal large models capable
of both processing visual modalities effectively and generating natural language fluently (Huang
et al., 2023; Driess et al., 2023; Lu et al., 2022) would help overcome this limitation and build better
grounded embodied agents.

Lack of effective reasoning on low-level actions. To help LLMs better focus on solving the overall
task, we abstract high-level plans for LLMs to directly reason on, reducing the potential decision
space significantly, but also making it unaware of the execution of low-level actions, and impossible
to reason over them, which may lead to plausible but ineffective decisions. For example in Figure 5a,
Alice saw Bob holding a container and a target object in both hands and figured he may not know
how to utilize the containers, so sent a message to instruct him to put the object into the container,
though Bob was actually putting in the objects at the same time, which is impossible for Alice to
reason over now. Developing agents that can directly make low-level controls is essential for building
better cooperative agents.

Unstable performance on complex reasoning. Although LLMs make correct reasoning most of
the time, they still occasionally make mistakes, including misunderstanding the environment rules
specified in the prompt, and incorrect reasoning over the number of unsatisfied goals (Figure 5b).
These mistakes can cause failures in planning. This calls for developing LLMs with stronger
instruction following and reasoning capability.

6 CONCLUSION

In this work, we propose a novel modular framework integrating the Large Language Models to build
cooperative embodied agents CoELA, who can plan, communicate, and collaborate efficiently with
other agents and humans in a challenging multi-agent setting with decentralized control, complex
partial observation, costly communication, and multi-objective long-horizon tasks. Our experiments
on two extended embodied multi-agent environments show the effectiveness of our proposed frame-
work and exhibit several cooperative behaviors. We fine-tune a CoLLAMA from LLAMA-2 using
data collected with our agents in embodied environments and showcase its promising performance to
build better cooperative embodied agents. We also discover that CoELA communicating in natural
language can cooperate better with humans and earn more trust from them. We believe that our
work indicates promising future avenues to design even stronger embodied agents with LLMs for
multi-agent cooperation. We further perform an in-depth analysis of the limitations of the current
LLMs and highlight several potential solutions for building better embodied cooperative agents for
the future.
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A ADDITIONAL DETAILS ON THE FRAMEWORK

A.1 PERCEPTION MODULE

To deal with raw sensory observations, a well-constructed Perception Module is needed for embodied
agents to extract useful information for downstream higher-order reasoning.

In TDW-MAT, the environment provides an observation of 512× 512 first-person view RGB image
and Depth image. The agent first utilizes a pre-trained Mask-RCNN (He et al., 2017) to obtain the
instance segmentation mask, then combines it with the depth image and the agent’s position to project
each pixel into the 3D world coordinate to obtain a 3D voxel semantic map, and finally accumulates
along the height dimension to build a top-down 2D semantic map of size L×W × 3, where the first
channel represents semantic classes including target objects, containers, destinations, and agents, and
the last two channels represent the occupied and explored area respectively. Each element in the map
denotes a grid of size 0.125m× 0.125m in the scene. The agent also extracts the relationship of the
objects with the help of instance segmentation masks and updates its Semantic Memory with the new
information extracted from the observation.

To obtain a more suitable model for instance segmentation in a TDW simulation environment, we
fine-tune the MASK-RCNN model pre-trained on the MS COCO dataset in training scenes. By
random sampling in the training environments, we collected 53K 512×512 RGB images and obtained
the ground truth instance segmentation mask from the environment as the training set. The fine-tuned
model achieves 81.4% mAP@50 in the test set.

Figure 6: A visualization of the semantic map stored in the Semantic Memory and updated
with new observations at every time in the TDW-MAT environment. The destination is shown in
red, target objects are in blue, containers are in green, the agent is denoted with cyan, and the other
agent’s position in memory is denoted in yellow.
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A.2 MEMORY MODULE

We mimic human’s long-term memory and design Semantic memory, Episodic Memory, and Proce-
dural Memory for CoELA to store the knowledge and experience it has of the world, other agents,
and itself.

Semantic Memory stores CoELA’s knowledge about the world including a semantic map as shown
in Figure 6 built and updated with local map perceived from the Perception Module, the task progress
which is initialized with all zeros and updated whenever the agent is in the range of the goal position,
the state of self including positions, holding objects status, and the state of others in memory which
is updated whenever the others is perceived in the observation. To be noticed, CoELA’s knowledge
about the world may not be accurate since other agents may interact with the objects and change their
states without its awareness. Dealing with imparities between the memory and the description of the
world from others adds even more challenges.

Episodic Memory stores CoELA’s experience about the past including the action history and dialogue
history. Each time CoELA executes a new action including sending out a message or receiving a new
message, the related information is added to the Episodic Memory. Empirically, we only keep the
last K actions and D dialogues for storage efficiency.

Procedural Memory contains knowledge including how to carry out specific high-level plans in a
specific environment implemented in code and the neural models’ parameters including LLMs and
Mask-RCNN. In our current implementation, the Procedural Memory is never updated except for
fine-tuning the model parameters, while it’s interesting to design a learning mechanism for it as in
(Wang et al., 2023a) as well.

A.3 COMMUNICATION MODULE

It’s important for cooperative embodied agents to be able to communicate effectively with others.
Effective communication needs to solve two problems: what to send and when to send.

We deal with the what to send problem in this module by directly using the LLMs as a Message
Generator with designed prompts, constructed from the components of Instruction Head, Goal
Description, States Description, Action History, and Dialogue History. To better constrain LLMs’
generated messages, we also add a note at the end of the prompt and append two seed messages at the
beginning of the Dialogue History to elicit deserved effective communication behavior. The detailed
prompt design is shown below:

Instruction Head This part of the prompts is fixed for an environment, mainly consisting of the
task instructions and environmental constraints.

Goal Description For each task, the goal description is converted from G = {g1, g2, ..., gk} using
a formal template.

State Description For each step, the state description is converted from task progress, state of self,
state of others, and semantic map retrieved from the Memory Module through a template.

Action History The concatenation of the last K actions (high-level plans) the agent took.

Dialogue History The Concatenation of the last D dialogues between agents including the messages
the agent itself has sent.

To constrain the message generation of the LLMs, we add a note at the end of the prompt:

Note: The generated message should be accurate, helpful, and brief. Do not generate repetitive
messages.

And append two seed messages at the beginning of the Dialogue History to elicit deserved effective
communication behavior:

Alice: "Hi, I’ll let you know if I find any goal objects, finish any subgoals, and ask for your help when
necessary.”
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Bob: "Thanks! I’ll let you know if I find any goal objects, finish any subgoals, and ask for your help
when necessary.”

A.4 PLANNING MODULE

CoELA needs a strong Planning Module to make decisions on which action to take utilizing all
available information gathered and stored so far to maximize cooperation efficiency.

While designing such a module from scratch consumes large human expert efforts and is nearly
impossible to generalize, we utilize powerful LLMs directly as the Planning Module by first retrieving
the related information from the Memory Module and converting them into text descriptions as in
the Communication Module, then compile an Action List of all available high-level plans proposed
according to the current state and the procedural knowledge stored for the LLMs to make the choice,
which formalization makes it easier for the LLMs to concentrate on the reasoning and make an
executable plan without any few-shot demonstrations easily, finally prompting the LLMs with current
information and the proposed Action List to generate a high-level plan. We also use the zero-shot
chain-of-thought prompting technique introduced by Kojima et al. (2022) to encourage the LLMs to
carry out more reasoning before giving the final answer.

Action List We compile all available actions regarding the current state into an Action List for
the LLMs to select from. The multi-choice formalization makes it easier for the LLM to make
an executable plan without any few-shot demonstrations. All available high-level plans on the
TDW-MAT include

• go to room *

• explore current room

• go grasp target object/container *

• put holding objects into the holding container

• transport holding objects to the bed

• send a message: "*"

Answer Extraction As shown in (Wei et al., 2022), chain-of-thought prompting can unleash the
strong reasoning ability of the LLMs, we use the zero-shot chain-of-thought prompting technique
introduced by (Kojima et al., 2022) to encourage the LLM to carry out more reasoning before giving
the final answer.

A.5 EXECUTION MODULE

To enable effective and generalized cooperation decision-making in different environments, we design
an Execution Module to generate primitive actions to execute a given high-level plan robustly in a
specific environment, allowing the Planning Module to be generalizable and focus more on solving
the overall task with LLMs’ rich world knowledge and strong reasoning ability. Practically, this
design can also reduce the LLM inference time and is time-saving and economical. When facing a
new environment with a different action space, only the procedural knowledge needs to be rewritten
for CoELA to work. For rearrangement tasks, we mainly use an A-star-based planner to find the
shortest path for navigation and robustly interact with the objects according to rules.

A.6 A WORKING EXAMPLE ON TDW-MAT

To better understand our method, we present A working example of CoELA on one step in the
TDW-MAT in Figure 7. CoELA receives an observation of 512×512 first-person view RGB image
and Depth image from the environment, first uses the Perception Module implemented with Mask-
RCNN to predict an instance segmentation mask, then builds 3D point clouds and extracts the
states (positions, names, IDs, objects holding if agents) of the key objects including target objects,
containers, and the agents, and builds a local occupancy map. The Memory Module uses the extracted
states of the key objects and the local occupancy map to construct and update the semantic map,
which is stored in Semantic Memory. The Memory Module also stores the task progress, the states
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Environment

Perception
Module

Memory
Module

• <apple>(136), [-2.4,  0.1, -2.0]
• <apple>(638), [-1.1,  0.1, -1.8]
• Bob, 1, [-3.6, 0.0, -4.1], holding 

<bread>(534), <orange>(238)
• Alice, 0, [5.7, 0.0, -1.5], holding 

nothing

Execution
Module

Reasoning 
Module

explore current room 

<Livingroom> (4000)

High-Level Plan

Move forward

0.5m

"Hi Alice, I'm in the Livingroom with 

a bread and an orange. I've also 

spotted two apples here. Can you 

search the Office and Kitchen for the 

remaining objects?”

Low-Level Action

Extracted Information

Observation

Semantic Map

Communication
Module

Message

Planning
Module

Message

Communication Module

Action History

Dialogue History

Instruction Head

Goal Description

State Description
Progress: I've taken 135/3000 steps. I'm holding two target objects 

<bread>(5345043) and <orange>(2387360). I'm in the <Livingroom>(4000), 
where I've explored part of it and found target objects <apple>(13644036), 
<apple>(6381322). Last time I saw Alice was in the <Office>(3000), she was 

holding nothing. I've explored none of the <Livingroom>(1000). I've explored 
none of the <Bedroom>(2000), and I found the goal position bed there. I've 

explored none of the <Office>(3000). I've explored none of the 
<Kitchen>(5000). I've explored none of the <Livingroom> (6000).

Planning Module

Instruction Head

Goal Description State Description

Action HistoryDialogue History

Answer Extraction

Action List
A. transport objects I'm holding to the bed
B. go to <Livingroom>(1000)
C. go to <Bedroom>(2000)
D. go to <Office>(3000)
E. go to <Kitchen>(5000)
F. go to <Livingroom>(6000)
G. explore current room <Livingroom>(4000)
H. Send message “Hi Alice, I’m in the Livingroom ...”

Figure 7: A working example on the TDW-MAT. The environment provides an observation of 512 *
512 first-person view RGB image and Depth image. The Perception Module takes these in, builds
3D point clouds, then extracts the states (positions, names, IDs, objects holding if agents) of the
key objects including target objects, containers, and the agents, and builds a local occupancy map.
The Memory Module uses the extracted states of the key objects and the local occupancy map to
construct and update the semantic map, which is stored in Semantic Memory. The Memory Module
also stores the task progress, the states of the agents in the Semantic memory, and the agent’s action
and dialogue history in the Episodic Memory, which are also updated when a message is received.
The Communication Module converts the semantic map, task progress, and agents’ states into textual
State Description and concatenates it with the Instruction Head, Goal Description, Action History,
and Dialogue History as the prompt to condition the LLM on current states and generate the message
to be sent beforehand. The Planning Module similarly takes these inputs and converts them into a
prompt with the addition of an Action List compiled with all available high-level plans including
sending the message just generated, then taking advantage of the chain-of-thought prompting to
decide on the high-level plan. The Execution Module first uses an A-Star-based planner to find the
shortest path from the current location to the target location with the help of the semantic map if
needed, then carry out the interaction required to finish the high-level plan.
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of the agents in the Semantic memory, and the agent’s action and dialogue history in the Episodic
Memory, which are also updated when a message is received. The Communication Module converts
the semantic map, task progress, and agents’ states into textual State Description and concatenates it
with the Instruction Head, Goal Description, Action History, and Dialogue History as the prompt to
condition the LLM on current states and generate the message to be sent beforehand. The Planning
Module similarly takes these inputs and converts them into a prompt with the addition of an Action
List compiled with all available high-level plans including sending the message just generated, then
taking advantage of the chain-of-thought prompting to decide on the high-level plan "explore current
room <Livingroom> (4000)". The Execution Module then uses an A-Star-based planner to find the
shortest path from the current location to the target location with the help of the semantic map and
gives the low-level primitive action of "Move forward 0.5m", which is carried out in the environment
and the new observation will be sent to the agents again.

B ADDITIONAL DETAILS ON ENVIRONMENTS

B.1 THREEDWORLD MULTI-AGENT TRANSPORT

Figure 8: TDW-MAT scenes, target objects, and containers.

As an extension of the ThreeDWorld Transport Challenge(Gan et al., 2020), ThreeDWorld Multi-
Agent Transport (TDW-MAT) supports multi-agent cooperation with natural language communication
and includes more types of objects with more realistic placements. In the new challenge, we use the
latest replicant humanoid provided by the TDW platform as an embodiment.

Tasks Two tasks are available in TDW-MAT: food-transporting task and stuff-transporting task.
The two tasks have different types of target objects and containers. Figure 8 shows an overview of
the two tasks: We create 4 floorplans and each of them has 3 layouts, where two floorplans are for
the training set and another two are for the test set. The food-transporting task has 6 types of targets
(apple, banana, orange, bread, loaf bread, and burger) and 3 containers (bowl, plate, and tea tray). In
contrast, the stuff-transporting task has 6 different types of targets(calculator, mouse, pen, lighter,
purse, and iPhone) and 3 containers (plastic basket, wood basket, and wicker basket). In each task,
there are 10 target objects and 2 to 5 containers in total. Additionally, there are 4 types of rooms:
living room, office, kitchen, and bedroom, and objects are placed in these rooms consistent with
common sense. For example, food is more likely to be found in kitchens, while stuff is often in
offices.

The agents are tasked to transport as many target objects as possible to the goal position with the help
of containers as tools. One container can carry most three objects, and without containers, the agent
can transport only two objects at a time. Agents need to transport target objects as much as possible
within 3000 frames.
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Figure 9: The RGB, depth, and oracle perception generated from the TDW-MAT environment.

Observation Space The embodied agent receives the egocentric RGB image and depth image as
the main observation, as well as some auxiliary observations. Figure 9 is an example of an image
generated from the TDW-MAT environment, and the detailed observation space is listed here:

• RGB image: the egocentric image comes from the camera facing forward, with screen size
512× 512 and field of view 90;

• Depth image: the depth image has the same camera intrinsic parameters as the RGB image;
• Oracle Perception (optional): an image where each object id is mapped to a color and the

camera intrinsic parameters are the same as the RGB image;
• Agent position and rotation: the agent’s position and rotation in the simulation world;
• Messages: the messages sent by all the agents;

Action Space In TDW-MAT, there are 7 types of actions for agents to interact with the environment
or communicate with each other. Each action takes several frames and the detailed action space is
listed here:

• Move forward: move forward 0.5m;
• Turn left: turn left by 15 degrees;
• Turn right: turn right by 15 degrees;
• Grasp: grasp an object, only the agent is close to the object can he perform the action

successfully. The object can be either a target or a container;
• Put In: put the target into the container, only the agent is holding a target in one hand and a

container in another hand can he perform the action.
• Drop: drop the objects held in hand;
• Send message: Send a message to other agents. In each frame, no more than 500 characters

can be sent.

B.2 COMMUNICATIVE WATCH-AND-HELP

Communicative Watch-And-Help (C-WAH) is an extension of the Watch-And-Help challenge(Puig
et al., 2021), which enables agents to send messages to each other. Sending messages, alongside
other actions, takes one timestep and has an upper limit on message length.

Tasks Five types of tasks are available in C-WAH, named Prepare afternoon tea, Wash dishes,
Prepare a meal, Put groceries, and Set up a dinner table. These tasks include a range of housework,
and each task contains a few subgoals, which are described by predicates. A predicate is in "ON/IN(x,
y)" format, that is, "Put x ON/IN y". The detailed descriptions of tasks are listed in Table 3.

The task goal is to satisfy all the given subgoals within 250 time steps, and the number of subgoals in
each task ranges from 3 to 5.

20



Task Name Predicate Set
Prepare afternoon tea ON(cupcake,coffeetable), ON(pudding,coffeetable),

ON(apple,coffeetable), ON(juice,coffeetable),
ON(wine,coffeetable)

Wash dishes IN(plate,dishwasher), IN(fork,dishwasher)

Prepare a meal ON(coffeepot,dinnertable),ON(cupcake,dinnertable),
ON(pancake,dinnertable), ON(poundcake,dinnertable),
ON(pudding,dinnertable), ON(apple,dinnertable),
ON(juice,dinnertable), ON(wine,dinnertable)

Put groceries IN(cupcake,fridge), IN(pancake,fridge),
IN(poundcake,fridge), IN(pudding,fridge),
IN(apple,fridge), IN(juice,fridge),
IN(wine,fridge)

Set up a dinner table ON(plate,dinnertable), ON(fork,dinnertable)

Table 3: Task description in C-WAH. There are 5 types of tasks and each of them contains a few
predicates.

Observation Space C-WAH has two observation modes, named Symbolic Observation and Visual
Observation. For Symbolic Observation, we followed the setting of the original Watch-And-Help
challenge, one agent can receive all the object information in the same room as the agent, and the
information includes location, status, name, relationship, etc.

For Visual Observation, agents can receive the egocentric RGB image and depth image, as well as
some auxiliary observations. The detailed observation space is listed here:

• RGB image: the egocentric image comes from the camera facing forward, with screen size
256× 512 and field of view 60;

• Depth image: the depth image has the same camera intrinsic parameters as the RGB image;

• Oracle Perception: it is an image where each object id is mapped to a color and the camera
intrinsic parameters are the same as the RGB image;

• Agent position: the agent’s position in the simulation world;

• Messages: the messages sent by all the agents.

Action Space The action space is similar to that in the original Watch-And-Help Challenge, with a
new action sending message added. The detailed action space is listed here:

• Walk towards: move to an object in the same room with the agents or a room;

• Turn left: turn left by 30 degrees;

• Turn right: turn right by 30 degrees;

• Grasp: grasp an object, only the agent is close to the object can he perform the action
successfully;

• Open: Open a closed container, only the agent is close to the container can he perform the
action successfully;

• Close: Close an open container, only the agent is close to the container can he perform the
action successfully;

• Put: Put the held objects into an open container or onto a surface, only the agent is close to
the target position can he perform the action successfully;

• Send message: Send a message to other agents. no more than 500 characters can be sent at
a time.
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C ADDITIONAL DETAILS ON EXPERIMENTS

C.1 TRAINING DETAILS ON THE MULTI-AGENT TRANSFORMERS

Multi-Agent-Transformer(MAT) We adopt Multi-Agent-Transformer(MAT) (Wen et al., 2022),
which regards MARL as a sequence modeling problem and applies a centralized decision transformer
to generate actions.

The input of MAT contains two parts, the first part is a top-down semantic map with size (12, 24)
from the oracle perception. The map has 9 channels, implying whether the place is a free space/obsta-
cle/wall/unexplored space/target object location/container location/goal location/my location/another
agent’s location, and the second part is the agent information(whether holds a container, holding
object counts, etc.). The output of MAT is one of the following actions: explore, navigate to the
nearest target object, navigate to the nearest container, and navigate to the goal place. Each action
will last for up to 50 frames or the action is finished.

We train our RL agents for 2e5 frames with the hidden layer dim 64, learning rate 7e− 4, ppo epoch
10 on training sets. After training, we test the RL agent on the test sets.

C.2 ADDITIONAL DETAILS ON OTHER BASELINES

Rule-based Hierarchical Planner(RHP) We adopt the strong performing baseline from the original
challenge, which is a Rule-based Hierarchical Planner with Frontier Exploration strategy, consisting
of a rule-based high-level planner that selects one of the high-level plans from Exploration, Pick
up an object, Pick up a container, and Place according to some human-defined rules and an A-star
based planner to navigate with occupancy map and semantic map obtain and updated from the visual
observation. The Frontier exploration strategy randomly samples a way-point from an unexplored
area as a sub-goal for exploration.

MCTS-based Hierarchical Planner We adopt the strongest baseline from the original Watch-And-
Help Challenge, which is a Hierarchical Planner with a high-level planner based on MCTS and a
low-level planner based on regression planning (RP).

C.3 ADDITIONAL DETAILS ON CoLLAMA

We collected 2k trajectories from 10 episodes in the training set of TDW-MAT with GPT-4 driven
CoELA and manually filtered 572 high-quality data with effective communication behavior and good
reasoning trace towards collaborative decision-making. We use LoRA to fine-tune the LLAMA-2-
13b-chat with a batch size of 384, a maximal sequence length of 2048, and a max learning rate of
4e−4 for 30 epochs (approximately 60 steps).

C.4 ADDITIONAL QUALITATIVE ANALYSIS OF THE AGENT BEHAVIORS

CoELA exhibit efficient communication and effective cooperation behavior To better understand
the essential factors for effective cooperation, we conduct a qualitative analysis of the agents’
behaviors exhibited in our experiments and identified several cooperative behaviors, as shown in
Figure 3.

CoELA shares progress and information with others. As shown in Figure 3abde, CoELA commu-
nicate with each other to share progress and intents, demonstrating the Communication Module
can handle the challenge of what to send, harnessing the free dialogue generation ability from the
LLMs.

CoELA knows when to request help and can respond to others’ requests. In Figure 3d, Bob
finds a target object in the living room but his container is already full, so he shares this information
and requests Alice to come here to help. Alice responds by going there and grabbing the objects.
Similarly in Figure 3b, Alice responds to Bob’s requests and questions. These examples show CoELA
know when to request help and can understand others’ requests and responses.

CoELA can adapt plans considering others. In Figure 3a, Bob suggests a labor division of himself
going to the kitchen while Alice checks the other rooms, but Alice suggests a better plan given her
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Figure 10: A qualitative example in Human + CoELA experiments, showcasing CoELA can commu-
nicate with Humans well and end up with a perfect division of the exploration trajectory.

circumstances that she’s already in the kitchen which Bob is not aware of before, and finally, Bob
adapts his plan to cooperate with her.

CoELA Agents know when not to communicate. In Figure 3c, though Bob receives Alice’s
suggestion of sharing any progress and has just found a plate, it’s more efficient for him to grab the
objects by himself and get the job done since this is the last goal object. He successfully reasons about
this and chooses not to communicate to achieve higher efficiency. We also observed this behavior
from humans when conducting the same task.

C.5 ADDITIONAL DETAILS ON THE HUMAN EXPERIMENTS

We show an effective communication example in Figure 10, where the human first shares his progress
with CoELA and suggests a labor division, CoELA understands and responds with its future plan
as well, resulting in a perfect division of the exploration trajectory. These results imply promising
futures for leveraging LLMs to build cooperative embodied agents that can successfully work with
humans.

D EXAMPLE PROMPTS

We show an example prompt for the Planning Module on C-WAH in Table 4, and an example prompt
for the Planning Module on TDW-MAT in Table 6.
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Table 4: Example prompt for the Reasoning Module on C-WAH

C-WAH Prompts

I’m Alice. I’m in a hurry to finish the housework with my friend
Bob together. Given our shared goal, dialogue history, and my
progress and previous actions, please help me choose the best
available action to achieve the goal as soon as possible. Note
that I can hold two objects at a time and there are no costs for
holding objects. All objects are denoted as <name> (id), such as
<table> (712).
Goal: Find and put 1 wine, 1 pancake, 1 poundcake, 1 juice, 1
apple onto the <kitchentable> (130).
Progress: I’m holding nothing. I’m in the <kitchen>, where I found
<kitchentable> (130), <apple> (386), and unchecked containers
<kitchencabinet> (137), <kitchencabinet> (138), <kitchencabinet>
(139), <kitchencabinet> (140), <stove> (157), <dishwasher> (159),
<fridge> (165), <fridge> (166), <microwave> (167). I also see Bob
here in the <kitchen>, he is holding <apple> (387). I found an
unchecked container <bathroomcabinet> (25) in the bathroom. The
livingroom is unexplored. The bedroom is unexplored.
Dialogue history:
Alice: "Hi, I’ll let you know if I find any goal objects and
finish any subgoals, and ask for your help when necessary."
Bob: "Thanks! I’ll let you know if I find any goal objects and
finish any subgoals, and ask for your help when necessary."
Alice: "Bob, I’m in the kitchen with the <kitchentable> (130) and
found <apple> (386). Please check the living room and bedroom for
the other items. I will search the kitchen cabinets and
appliances."
Bob: "Alice, I found an <apple> (387) and I’m in the <livingroom>.
Can you search the kitchen for the other items? I’ll check the
bathroom and bedroom next."
Previous actions: [goexplore] <bathroom> (11), [goexplore]
<kitchen> (56), [send_message], [gocheck] <kitchencabinet> (133),
[gocheck] <kitchencabinet> (134), [gocheck] <kitchencabinet>
(135), [gocheck] <kitchencabinet> (136)
Available actions:
A. [send_message] <"Bob, I see you have an <apple> (387). Please
put it on the <kitchentable> (130) and check the bedroom while I
search the remaining kitchen cabinets and appliances for the other
items.">
B. [goexplore] <livingroom> (198)
C. [goexplore] <bedroom> (294)
D. [gocheck] <kitchencabinet> (137)
E. [gocheck] <kitchencabinet> (138)
F. [gocheck] <kitchencabinet> (139)
G. [gocheck] <kitchencabinet> (140)
H. [gocheck] <stove> (157)
I. [gocheck] <dishwasher> (159)
J. [gocheck] <fridge> (165)
K. [gocheck] <fridge> (166)
L. [gocheck] <microwave> (167)
M. [gocheck] <bathroomcabinet> (25)
N. [gograb] <apple> (386)
Answer: Let’s think step by step.
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LLM outputs

First, we know that Bob is already holding an <apple> (387) and is
in the <livingroom>. We also know that we need to find and put 1
wine, 1 pancake, 1 poundcake, 1 juice, and 1 apple onto the
<kitchentable> (130). Since we are already in the <kitchen> and
there are several unchecked containers, the best course of action
is to continue searching the kitchen cabinets and appliances for
the remaining items.
So, the best available action for Alice is:
D. [gocheck] <kitchencabinet> (137)
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Table 6: Example prompt for the Reasoning Module on TDW-MAT

TDW-MAT Prompts

I’m Alice. My friend Bob and I want to transport as many target
objects as possible to the bed with the help of containers within
3000 steps. I can hold two things at a time, and they can be
objects or containers. I can grasp containers and put objects into
them to hold more objects at a time. Given our shared goal,
dialogue history, my progress, and previous actions, please help
me choose the best available action to achieve the goal as soon as
possible. Note that a container can contain three objects, and
will be lost once transported to the bed. I can only put objects
into the container I hold after grasping it. All objects are
denoted as <name> (id), such as <table> (712). Actions take
several steps to finish. It may be costly to go to another room or
transport to the bed, use these actions sparingly.
Goal: Transport 3 pens, 1 lighter, 3 ipods, 2 purses, 1 key to the
bed.
Progress: I’ve taken 1313/3000 steps. We’ve already transported
<key> (3207585), <purse> (15433283), <ipod> (6544816), <purse>
(11543537), <pen> (12835254) to the bed. I’m holding nothing. I’m
in the <Bedroom> (2000), where I’ve explored all of it and found
the goal position bed. Last time I saw Bob was in the <Office>
(3000), he was holding nothing. I’ve explored part of the
<Livingroom> (1000), and I found a container <wicker_basket>
(13929244) there. I’ve explored none of the <Office> (3000), and I
found target objects <ipod> (2031829), <ipod> (16421571) there.
I’ve explored part of the <Livingroom> (4000). I’ve explored none
of the <Kitchen> (5000). I’ve explored all of the <Livingroom>
(6000), and I found a target object <pen> (1440084) there.
Dialogue history:
Alice: "Hi, I’ll let you know if I find any target objects and
containers, finish any subgoals, and ask for your help when
necessary."
Bob: "Thanks! I’ll let you know if I find any target objects and
containers, finish any subgoals, and ask for your help when
necessary."
Alice: "Bob, I suggest you transport the basket with key and purse
to the bed in the Bedroom (2000). Meanwhile, I’ll go to the
Livingroom (6000) to grab the pen and the container from
Livingroom (1000) to collect more items. Let’s meet at the bed
afterward to plan further."
Bob: "Alice, I’m heading to the Bedroom to transport the basket
with key and purse. After you grab the pen and container, let’s
meet at the bed to plan our next steps. Let me know if you find
any other target objects."
Bob: "Alice, I just transported the key and purse to the bed.
Please grab the pen and container you found and head to the bed.
Let me know if you find any other target objects or containers on
your way."
Previous actions: go to <Bedroom> (2000) at step 396, send a
message at step 584, go grasp container <plastic_basket>
(15946891) at step 585, go grasp target object <ipod> (6544816) at
step 880, put <ipod> (6544816) into the container <plastic_basket>
(15946891) at step 889, go grasp target object <purse> (11543537)
at step 929, put <purse> (11543537) into the container
<plastic_basket> (15946891) at step 1033, go grasp target object
<pen> (12835254) at step 1057, put <pen> (12835254) into the
container <plastic_basket> (15946891) at step 1098, transport
objects I’m holding to the bed at step 1131
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TDW-MAT Prompts

Available actions: (You can only choose the action in the list)
A. send a message: "Bob, I transported an ipod, purse, and pen to
the bed. I found a container <wicker_basket> (13929244) in the
<Livingroom> (1000) and target objects <ipod> (2031829) and <ipod>
(16421571) in the <Office> (3000). Please collect the ipods and
explore the <Office> for more objects. I’ll collect the container
and pen from the <Livingroom> and meet you at the bed."
B. go grasp target object <pen> (1440084)
C. go grasp target object <ipod> (2031829)
D. go grasp target object <ipod> (16421571)
E. go grasp container <wicker_basket> (13929244)
F. go to <Livingroom> (1000)
G. go to <Office> (3000)
H. go to <Livingroom> (4000)
I. go to <Kitchen> (5000)
J. go to <Livingroom> (6000)
Answer: Let’s think step by step.

LLM outputs

First, we need to collect the remaining target objects. You should
go to the <Livingroom> (6000) to grasp the <pen> (1440084) since
it’s a target object. So, the best available action is:
B. go grasp target object <pen> (1440084)

E TEMPLATE LANGUAGE COMMUNICATION FOR MCTS-BASED HP AGENT

To enable the MCTS-based Hierarchical Planner to also leverage the new communication capability,
we design three types of template language communication for it.

Progress Sharing P An important motivation for communication is to share progress with others to
update each other about the total progress of the task. So we design the first template communication
to share progress.

When the agent carries out the action of put, which implies a new subgoal has been achieved by the
agent, it will send a message such as:

’P’: ’I successfully put poundcake <383> on kitchentable <130>, and they are in kitchen <56>. ’

When the agent receives such a message, it will process it and extract the sub-goal satisfied, and use
it to update its inner tracking of the task progress, so avoiding taking an already satisfied sub-goal as
a sub-goal again to better cooperate.

Intent Sharing I Another important motivation for communication is to share intent with each
other so that all the agents can plan coordinately together. So we design a template communication to
share intent.

When the agent changes its sub-goal (practically, the Monte Carlo Tree Search High-Level Planner
gives a new plan), it will tell the other agents its current sub-goal by sending a message such as:

’I’: ’Now I want to put cutleryfork <369> in dishwasher <104>, and I have not found it yet. ’

When the agent receives such a message, it will process it and extract the other agents’ new sub-goal
and update its belief about the others’ intents, so it will not choose the same sub-goal with the others
to avoid duplicate and improve efficiency.
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Belief Sharing B Sharing the scenes the agent just sees to the other agents can help them update
their belief of the location of the object as well, and more importantly, this can help agents to build
common ground on the belief of the objects to better cooperate together. So we also design a template
communication to share beliefs.

When entering a new room, the agent will send all goal objects found or containers newly checked
with no findings or target objects in it to others, such as:

’B’: ’I found nothing is inside kitchencabinet <75>. nothing is inside kitchencabinet <76>. nothing
is inside dishwasher <104>. nothing is inside cabinet <216>. cutleryfork <369>, cutleryfork <370>
and plate <373> are inside kitchen <11>.’

When the agent receives such a message, it will process and extract the information maintained in
the message to update its belief of the location distributions of the objects just as it has been seen by
itself.

Also to be noticed, the agents may combine these three types of template communication to send one
combined message at one time instead of multiple messages over several steps to improve efficiency.
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