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Abstract

In complex reinforcement learning (RL) problems, policies with similar rewards
may have substantially different behaviors. It remains a fundamental challenge
to optimize rewards while also discovering as many diverse strategies as possible,
which can be crucial in many practical applications. Our study examines two design
choices for tackling this challenge, i.e., diversity measure and computation frame-
work. First, we find that with existing diversity measures, visually indistinguishable
policies can still yield high diversity scores. To accurately capture the behavioral
difference, we propose to incorporate the state-space distance information into
the diversity measure. In addition, we examine two common computation frame-
works for this problem, i.e., population-based training (PBT) and iterative learning
(ITR). We show that although PBT is the precise problem formulation, ITR can
achieve comparable diversity scores with higher computation efficiency, leading to
improved solution quality in practice. Based on our analysis, we further combine
ITR with two tractable realizations of the state-distance-based diversity measures
and develop a novel diversity-driven RL algorithm, State-based Intrinsic-reward
Policy Optimization (SIPO), with provable convergence properties. We empirically
examine SIPO across three domains from robot locomotion to multi-agent games.
In all of our testing environments, SIPO consistently produces strategically diverse
and human-interpretable policies that cannot be discovered by existing baselines.

1 Introduction

A consensus in deep learning (DL) is that different local optima have similar mappings in the
functional space, leading to similar losses to the global optimum [62, 56, 40]. Hence, via stochastic
gradient descent (SGD), most DL works only focus on the final performance without considering
which local optimum SGD discovers. However, in complex reinforcement learning (RL) problems, the
policies associated with different local optima can exhibit significantly different behaviors [10, 35, 64].
Thus, it is a fundamental problem for an RL algorithm to not only optimize rewards but also discover
as many diverse strategies as possible. A pool of diversified policies can be further leveraged
towards a wide range of applications, including the discovery of emergent behaviors [34, 3, 61],
generating diverse dialogues [30], designing robust robots [12, 25, 19], and enhancing human-AI
collaboration [38, 9, 11].

Obtaining diverse RL strategies requires a quantitative method for measuring the difference (i.e.,
diversity) between two policies. However, how to define such a measure remains an open challenge.
Previous studies have proposed various diversity measures, such as comparing the difference between
the action distributions generated by policies [60, 38, 74], computing probabilistic distances between
the state occupancy of different policies [43], or measuring the mutual information between states and
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policy identities [16]. However, it remains unclear which measure could produce the best empirical
performance. Besides, the potential pitfalls of these measures are rarely discussed.

In addition to diversity measures, there are two common computation frameworks for discovering
diverse policies, including population-based training (PBT) and iterative learning (ITR). PBT directly
solves a constrained optimization problem by learning a collection of policies simultaneously, subject
to policy diversity constraints [52, 38, 9]. Although PBT is perhaps the most popular framework in
the existing literature, it can be computationally challenging [48] since the number of constraints
grows quadratically with the number of policies. The alternative framework is ITR, which iteratively
learns a single policy that is sufficiently different from previous policies [43, 74]. ITR is a greedy
relaxation of the PBT framework and it largely simplifies the optimization problem in each iteration.
However, the performance of the ITR framework has not been theoretically analyzed yet, and it is
often believed that ITR can be less efficient due to its sequential nature.

We provide a comprehensive study of the two aforementioned design choices. First, we examine
the limitations of existing diversity measures in a few representative scenarios, where two policies
outputting very different action distributions can still lead to similar state transitions. In these
scenarios, state-occupancy-based measures are not sufficient to truly reflect the underlying behavior
differences of the policies either. By contrast, we observe that diversity measures based on state
distances can accurately capture the visual behavior differences of different policies. Therefore, we
suggest that an effective diversity measure should explicitly incorporate state distance information
for the best practical use. Furthermore, for the choice of computation framework, we conduct an
in-depth analysis of PBT and ITR. We provide theoretical evidence that ITR, which has a simplified
optimization process with fewer constraints, can discover solutions with the same reward as PBT
while achieving at least half of the diversity score. This finding implies that although ITR is a greedy
relaxation of PBT, their optimal solutions can indeed have comparable qualities. Furthermore, note
that policy optimization is much simplified in ITR, which suggests that ITR can result in much better
empirical performances and should be preferred in practice.

Following our insights, we combine ITR and a state-distance-based diversity measure to develop
a generic and effective algorithm, State-based Intrinsic-reward Policy Optimization (SIPO), for
discovering diverse RL strategies. In each iteration, we further solve this constrained optimization
problem via the Lagrange method and two-timescale gradient descent ascent (GDA) [31]. We
theoretically prove that our algorithm is guaranteed to converge to a neighbor of ϵ-stationary point.
Regarding the diversity measure, we provide two practical realizations, including a straightforward
version based on the RBF kernel and a more general learning-based variant using Wasserstein
distance.

We evaluate SIPO in three domains ranging from single-agent continuous control to multi-agent
games: Humanoid locomotion [42], StarCraft Multi-Agent Challenge [57], and Google Research
Football (GRF) [26]. Our findings demonstrate that SIPO surpasses baselines in terms of population
diversity score across all three domains. Remarkably, our algorithm can successfully discover 6
distinct human-interpretable strategies in the GRF 3-vs-1 scenario and 4 strategies in two 11-player
GRF scenarios, namely counter-attack, and corner, without any domain-specific priors, which are
beyond the capabilities of existing algorithms.

2 Related Work

Diversity in RL. It has been shown that policies trained under the same reward function can exhibit
significantly different behaviors [10, 35]. Merely discovering a single high-performing solution may
not suffice in various applications [12, 64, 25]. As such, the discovery of a diverse range of policies
is a fundamental research problem, garnering attention over many years [44, 13, 28]. Early works
are primarily based on multi-objective optimization [45, 55, 39, 47, 54], which assumes a set of
reward functions is given in advance. In RL, this is also related to reward shaping [46, 2, 15, 61]. We
consider learning diverse policies without any domain knowledge.

Population-based training (PBT) is the most popular framework for diverse solutions by jointly
learning separate policies. Representative works include evolutionary computation [65, 37, 52],
league training [64, 23], computing Hessian matrix [51] or constrained optimization with a population
diversity measure [38, 73, 29, 36, 9]. An improvement is to learn a latent variable policy instead of
separate ones. Prior works have incorporated different domain knowledge to design the latent code,
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such as action clustering [66], agent identities [29, 21] or prosocial level [53, 3]. The latent variable
can be also learned in an unsupervised fashion, such as in DIYAN [16] and its variants [25, 49].
Zahavy et al. [71] learns diverse policies with hard constraints on rewards to ensure the derived
policies are (nearly) optimal, potentially hindering policies with disparate reward scales. On the other
hand, our method prioritizes diversity and fully accepts sub-optimal strategies.

Iterative learning (ITR) simplifies PBT by only optimizing a single policy in each iteration and
forcing it to behave differently w.r.t. previously learned ones [43, 60, 74]. While some ITR works
require an expensive clustering process before each iteration [72] or domain-specific features [70], we
consider domain-agnostic ITR in an end-to-end fashion. Besides, Pacchiano et al. [50] learns a kernel-
based score function to iteratively guide policy optimization. The score function is conceptually
similar to SIPO-WD but is applied to a parallel setting with more restricted expressiveness power.

Diversity Measure. Most previous works considered diversity measures on action distribution
and state occupancy. For example, measures such as Jensen-Shannon divergence [38] and cross-
entropy [74] are defined over policy distributions to encourage different policies to take different
actions on the same state, implicitly promoting the generation of diverse trajectories. Other measures
such as maximum mean discrepancy [43] maximize the probability distance between the state
distributions induced by two policies. However, these approaches can fail to capture meaningful
behavior differences between two policies in certain scenarios, as we will discuss in Section 4.1. There
also exist specialized measures, such as cross-play rewards [9], which are designed for cooperative
multi-agent games. It is worth noting that diversity measures are closely related to exploration
criteria [4, 20, 6, 27] and skill discovery [8, 32, 24], where a diversity surrogate objective is often
introduced to encourage broad state coverage. However, this paper aims to explicitly discover
mutually distinct policies. Our diversity measure depends on a function that computes the distance
between states visited by two policies.

3 Preliminary
Notation: We consider POMDP [59] defined by M = ⟨S,A,O, r, P,O, ν,H⟩. S is the state
space. A and O are the action and observation space. r : S × A → R is the reward function.
O : S → O is the observation function. H is the horizon. P is the transition function. At timestep
h, the agent receives an observation oh = O(sh) and outputs an action ah ∈ A w.r.t. its policy
π : O → △ (A). The RL objective J(π) is defined by J(π) = E(sh,ah)∼(P,π)

[∑H
h=1 r(sh, ah)

]
.

The above formulation can be naturally extended to cooperative multi-agent settings, where π and
R correspond to the joint policy and the shared reward. We follow the standard POMDP notations
for conciseness. Our method will be evaluated in both single-agent tasks and complex cooperative
multi-agent scenarios. Among them, multi-agent environments encompass a notably more diverse
range of potential winning strategies, and hence offer an apt platform for assessing the effectiveness
of our method. Moreover, in this paper, we assume access to object-centric information and
features rather than pure visual observations to simplify our discussion. We remark that although
we restrict the scope of this paper to states, our method can be further extended to high-dimensional
inputs (e.g. images, see App. B.4.1) or tabular MDPs via representation learning [68, 14].

Finally, to discover diverse strategies, we aim to learn a set of M policies {πi}Mi=1 such that all of
these policies are locally optimal under J(·) but mutually distinct subject to some diversity measure
D(·, ·) : △×△→ R, which captures the difference between two policies.

Existing Diversity Measures: We say a diversity measure D is defined over action distribution if it
can be written as

D(πi, πj) = Es∼q(s)

[
D̃A (πi(· | s)∥πj(· | s))

]
, (1)

where q is an occupancy measure over states, D̃A : △×△→ R measures the difference between
action distributions. D̃A can be any probability distance as defined in prior works [60, 38, 74, 52].

Denote the state occupancy of π as qπ . We say a diversity measure is defined over state occupancy if
it can be written as

D(πi, πj) = D̃S
(
qπi∥qπj

)
, (2)
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Agent Goal Table 1: Diversity measures of the grid-world example. Computation details can be
found in App. B.

human action-based state-distance-based

KL JSD1 JSD0/EMD L2 norm L2 norm EMD

D(π1, π2) small +∞ log 2 1/2
√

7 2
√
2 5.7

D(π1, π3) large +∞ log 2 1/8 1 2
√

6 11.3

Figure 1: (left) A grid-world environment with 5 different optimal policies. Intuitively, D(π1, π2) < D(π1, π3)
and D(π3, π4) < D(π3, π5). However, action-based measures can give DA(π1, π2) ≥ DA(π1, π3) and
state-occupancy-based measures can give D(π3, π4) = D(π3, π5).

which can be realized as an integral probability metric [43]. We remark that qπ is usually intractable.

In addition to diversity measures, we present two popular computation frameworks for this purpose.

Population-Based Training (PBT): PBT is a straightforward formulation by jointly learning M
policies {πi}Mi=1 subject to pairwise diversity constraints, i.e.,

max
{πi}

M∑
i=1

J(πi) s.t. D(πj , πk) ≥ δ,∀j, k ∈ [M ], j ̸= k, (3)

where δ is a threshold. In our paper, we consistently refer to the aforementioned computation
framework as "PBT", rather than adjusting hyperparameters [22]. Despite a precise formulation, PBT
poses severe optimization challenges due to mutual constraints.

Iterative Learning (ITR): ITR is a greedy approximation of PBT by iteratively learning novel
policies. In the i-th (1 ≤ i ≤M ) iteration, ITR solves

π⋆
i = argmax

πi

J(πi) s.t. D(πi, π
⋆
j ) ≥ δ,∀1 ≤ j < i. (4)

π⋆
j is recursively defined by the above equation. Compared with PBT, ITR trades off wall-clock time

for less required computation resources (e.g., GPU memory) and performs open-ended training (i.e.,
the population size M does not need to be fixed at the beginning of training).

4 Analysis of Existing Diversity-Discovery Approaches

In this section, we conduct both quantitative and theoretical analyses of existing approaches to
motivate our method. We first discuss diversity measures in Sec. 4.1 and then compare computation
frameworks, namely PBT and ITR, in Sec. 4.2.

4.1 A Common Missing Piece in Diversity Measure: State Distance

The perception of diversity among humans primarily relies on the level of dissimilarity within the
state space, which is measured by a distance function. However, the diversity measures outlined
in Eq. (1) and Eq. (2) completely fail to account for such crucial information. In this section, we
provide a detailed analysis to instantiate this observation with concrete examples and propose a novel
diversity measure defined over state distances.

First, we present a synthetic example to demonstrate the limitations of current diversity measures.
Our example consists of a grid-world environment with a single agent and grid size NG. The agent
starts at the top left of the grid-world and must navigate to the bottom right corner, as shown in
Fig. 1. While NG can be large in general, we illustrate with NG = 5 for simplicity. We draw five
distinct policies, denoted as π1 through π5, which differ in their approach to navigating the grid-world.
Consider π1, π2, and π3 first. Although humans may intuitively perceive that policies π1 and π2,
which move along the diagonal, are more similar to each other than to π3, which moves along the
boundary, diversity measures based on actions can fail to reflect this intuition, as shown in Table 1.
Then, let’s switch to policies π3, π4, and π5. We find that state-occupancy-based diversity measures
are unable to differentiate between π4 and π5 in contrast to π3. This is because the states visited by
π3 are entirely disjoint from those visited by both π4 and π5. However, humans would judge π5 to be
more distinct from π3 than π4 because both π3 and π4 tend to visit the upper boundary.
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Dribbling Player

Idle Player

Figure 2: A counter-example for
action-based diversity measure:
in a football game, we can achieve
a high diversity score by simply
asking a single idle player to out-
put random actions, which does
not affect the high-level gameplay
strategy at all.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Epoch 0 Epoch 10 Epoch 20 Epoch 30

PBT

ITR

Training Progress

Figure 3: Illustration of the learning process of PBT and ITR in a
2-D navigation environment with 4 modes. PBT will not uniformly
converge to different landmarks as computation can be either too
costly or unstable. By contrast, ITR repeatedly excludes a particular
landmark, such that policy in the next iteration can continuously
explore until a novel landmark is discovered.

Next, we consider a more realistic and complicated multi-agent football scenario, i.e., the Google
Research Football [26] environment, in Fig. 2, where an idle player in the backyard takes an arbitrary
action without involving in the attack at all. Although the idle player stays still with no effect on the
team strategy, action-based measures can produce high diversity scores. This example underscores
a notable issue. If action-based measures are leveraged to optimize diversity, the resultant policies
can produce visually similar behavior. While it can be possible to exclude idle actions by modifying
task rewards, it requires domain-specific hacks and engineering efforts. The issue of idle actions
exists even in such popular MARL benchmarks. Similar issues have also been observed in previous
works [38].

To summarize, existing measures suffer from a significant limitation — they only compare the
behavior trajectories implicitly through the lens of action or state distribution without explicitly
measuring state distance. Specifically, action-based measures fail to capture the behavioral differences
that may arise when similar states are reached via different actions. Similarly, state occupancy
measures do not quantify the degree of dissimilarity between states. To address this limitation, we
propose a new diversity measure that explicitly takes into account the distance function in state space:

D(πi, πj) = E(s,s′)∼γ [g (d (s, s
′))] , (5)

d is a distance metric over S × S. g : R+ → R is a monotonic cost function. γ ∈ Γ(qπi
, qπj

) is a
distribution over state pairs. Γ(qπi

, qπj
) denotes the collection of all distributions on S × S with

marginals qπi and qπj on the first and second factors respectively. The cost function g is a notation
providing a generalized and unified definition. It also contributes to training stability by scaling
the raw distance. We highlight that Eq. (5) computes the cost on individual states before taking
expectation, and therefore prevents information loss of taking an average over the entire trajectory
(e.g. the DvD score [52]). We also note that states are consequences of performed actions. Hence, a
state-distance-based measure also implicitly reflects the (meaningful) differences in actions between
two policies. We compute two simple measures based on state distance, i.e., the L2 norm and the
Earth Moving Distance (EMD), for the grid-world example and present results in Table 1. These
measures are consistent with human intuition.

4.2 Computation Framework: Population-Based or Iterative Learning?

We first consider the simplest motivating example to intuitively illustrate the optimization challenges.
Let’s assume that πi is a scalar, J(πi) is linear in πi, and D(πi, πj) = |πi − πj |. In our definition,
where M denotes the number of diverse policies, PBT involves Θ(M2) constraints in a single linear
programming problem while ITR involves O(M) constraints in each of M iterations. Given that
the complexity of linear programming is a high-degree polynomial (higher than 2) of the number of
constraints, solving PBT is harder (and probably slower) than solving ITR in a total of M iterations,
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despite PBT being parallelized. This challenge can be more severe in RL due to complex solution
space and large training variance.

δ/2 δ/2 δ/2 δ/2

optimal solution

solution found by ITR
with threshold δ/2
worst-case solution found
by ITR with threshold δ

J(π)

π

1

2

1 2

Figure 4: 1-D worst case of ITR. With threshold δ, ITR
finds solutions with inferior rewards. However, ITR can
find optimal solutions if the threshold is halved.

Although ITR can be optimized efficiently, it re-
mains unclear whether ITR, as a greedy approx-
imation of PBT, can obtain solutions of compa-
rable rewards. Fig. 4 shows the worst case in the
1-D setting when the ITR solutions (green) can
indeed have lower rewards than the PBT solu-
tion (red) subject to the same diversity constraint.
However, we will show in the next theorem that
ITR is guaranteed to have no worse rewards than
PBT by trading off half of the diversity.

Theorem 4.1. Assume D is a distance metric. Denote the optimal value of Eq.( 3) as T1. Let
T2 =

∑M
i=1 J(π̃i) where

π̃i = argmax
πi

J(πi) s.t. D(πi, π̃j) ≥ δ/2, ∀1 ≤ j < i (6)

for i = 1, . . . ,M , then T2 ≥ T1.

Please see App. E.1 for the proof. The above theorem provides a quality guarantee for ITR. The proof
can be intuitively explained by the 1-D example in Fig. 4, where green points represent the worst
case with threshold δ and blue points represent the solutions with threshold δ/2. Thm. 4.1 shows that,
for any policy pool derived by PBT, we can always use ITR to obtain another policy pool, which has
the same rewards and comparable diversity scores.

Table 2: The number of discovered
landmarks across 6 seeds with stan-
dard deviation in the bracket.

setting PBT ITR

NL = 4 2.0 (1.0) 3.5 (0.5)
NL = 5 2.2 (0.9) 4.5 (0.5)

Empirical Results: We empirically compare PBT and ITR in a
2-D navigation environment with 1 agent and NL landmarks in
Fig. 3. The reward is 1 if the agent successfully navigates to a
landmark and 0 otherwise. We train NL policies using both PBT
and ITR to discover strategies toward each of these landmarks.
More details can be found in App. D. Table 2 shows the number
of discovered landmarks by PBT and ITR. ITR performs consis-
tently better than PBT even in this simple example. We intuitively
illustrate the learning process of PBT and ITR in Fig. 3. ITR, due to its computation efficiency, can
afford to run longer iterations and tolerate larger exploration noises. Hence, it can converge easily to
diverse solutions by imposing a large diversity constraint. PBT, however, only converges when the
exploration is faint, otherwise it diverges or converges too slowly.

4.3 Practical Remark

Based on the above analyses, we suggest ITR and diversity measures based on state distances
be preferred in RL applications. We also acknowledge that, by the no-free-lunch theorem, they
cannot be universal solutions and that trade-offs may still exist (see discussions in Sec.7 and App.F).
Nonetheless, in the following sections, we will show that the effective implementation of these choices
can lead to superior performances in various challenging benchmarks. We hope that our approach will
serve as a starting point and provide valuable insights into the development of increasingly powerful
algorithms for potentially more challenging scenarios.

5 Method

In this section, we develop a diversity-driven RL algorithm, State-based Intrinsic-reward Policy
Optimization (SIPO), by combining ITR and state-distance-based measures. SIPO runs M iterations
to discover M distinct policies. At the i-th iteration, we solve equation (4) by converting it into
unconstrained optimization using the Lagrange method. The unconstrained optimization can be
written as:

min
πi

max
λj≥0, 1≤j<i

−J(πi)−
i−1∑
j=1

λj

(
DS(πi, π

⋆
j )− δ

)
(7)
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λj (1 ≤ j < i) are Lagrange multipliers. {π⋆
j }

i−1
j=1 are previously obtained policies. We adopt

two-timescale Gradient Descent Ascent (GDA) [31] to solve the above minimax optimization, i.e.,
performing gradient descent over πi and gradient ascent over λj with different learning rates. In
our algorithm, we additionally enforce the dual variables λj to be bounded (i.e., in an interval
[0,Λ] for a large number Λ), which plays an important role both in the theoretical analysis and
in empirical convergence. However, DS(πi, π

⋆
j ) cannot be directly optimized w.r.t. πi through

gradient-based methods because it depends on the states traversed by π, rather than its output (e.g.
actions). Therefore, we cast DS(πi, π

⋆
j ) as the cumulative sum of intrinsic rewards, specifically

the intrinsic return. This allows us to leverage policy gradient techniques for optimization. The
pseudocode of SIPO can be found in App. G.

An important property of SIPO is the convergence guarantee. We present an informal illustration in
Thm. 5.1 and present the formal theorem with proof in App. E.2.
Theorem 5.1. (Informal) Under continuity assumptions, SIPO converges to an ϵ-stationary point.

Remark: We assumed that the return J and the distance DS are smooth in policies. In practice, this
is true if (1) policy and state space are bounded and (2) reward function and system dynamics are
continuous in the policy. (Continuous functions are bounded over compact spaces.) The key step is to
analyze the role of the bounded dual variables λ, which achieves an 1

Λ -approximation of constraint
without hurting the optimality condition.

Instead of directly defining DS , we define intrinsic rewards as illustrated in Sec. 5, such that
DS(πi, π

⋆
j ) = Esh∼µπi

[∑H
h=1 rint(sh;πi, π

⋆
j )
]
.

RBF Kernel: The most popular realization of Eq. (5) in machine learning is through kernel functions.
Herein, we realize Eq. (5) as an RBF kernel on states. Formally, the intrinsic reward is defined by

rRBF
int (sh;πi, π

⋆
j ) =

1

H
Es′∼µπ⋆

j

[
− exp

(
−∥sh − s′∥2

2σ2

)]
(8)

where σ is a hyperparameter controlling the variance.

Wasserstein Distance: For stronger discrimination power, we can also realize Eq. (5) as L2-
Wasserstein distance. According to the dual form [63], we define

rWD
int (sh;πi, π

⋆
j ) =

1

H
sup

∥f∥L≤1

f(sh)− Es′∼µπ⋆
j

[
f(s′)

]
(9)

where f : S → R is a 1-Lipschitz function. This realization holds a distinct advantage due
to its interpretation within optimal transport theory [63, 1]. Unlike distances that rely solely on
specific summary statistics such as means, Wasserstein distance can effectively quantify shifts in state
distributions and remains robust in the presence of outliers [63]. We implement f as a neural network
and clip parameters to [−0.01, 0.01] to ensure the Lipschitz constraint. Note that rWD

int incorporates
representation learning by utilizing a learnable scoring function f and is more flexible in practice.
We also show in App. B.4 that rWD

int is robust to different inputs, including states with random noises
and RGB images.

We name SIPO with rRBF
int and rWD

int SIPO-RBF and SIPO-WD respectively.

Implementation: To incorporate temporal information, we stack the recent 4 global states to
compute intrinsic rewards and normalize the intrinsic rewards to stabilize training. In multi-agent
environments, we learn an agent-ID-conditioned policy [17] and share the parameter across all agents.
Our implementation is based on MAPPO [69] with more details in App. D.

6 Experiments

We evaluate SIPO across three domains that exhibit multi-modality of solutions. The first domain
is the humanoid locomotion task in Isaac Gym [42], where diversity can be quantitatively assessed
by well-defined behavior descriptors. We remark that the issues we addressed in Sec. 4.1 may not
be present in this task where the action space is small and actions are highly correlated with states.
Further, we examine the effectiveness of SIPO in two much more challenging multi-agent domains,
StarCarft Multi-Agent Challenge (SMAC) [57] and Google Research Football (GRF) [26], where
well-defined behavior descriptors are not available and existing diversity measures may produce
misleading diversity scores. We provide introductions to these environments in App. C.
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First, we show that SIPO can efficiently learn diverse strategies and outperform several baseline
methods, including DIPG [43], SMERL [25], DvD [52], and RSPO [74]. Then, we qualitatively
demonstrate the emergent behaviors learned by SIPO, which are both visually distinguishable and
human-interpretable. Finally, we perform an ablation study over the building components of SIPO
and show that both the diversity measure, ITR, and GDA are critical to the performance.

All algorithms run for the same number of environment frames on a desktop machine with an
RTX3090 GPU. Numbers are average values over 5 seeds in Humanoid and SMAC and 3 seeds in
GRF with standard deviation shown in brackets. More algorithm details can be found in App. D.
Additional visualization results can be found on our project website (see App. A).

6.1 Comparison with Baseline Methods

Table 3: Pairwise distance of joint
torques (i.e., diversity scores) in the hu-
manoid locomotion task.

SIPO-RBF SIPO-WD RSPO

0.53(0.17) 0.71(0.23) 0.53(0.05)

DIPG DvD SMERL

0.12(0.04) 0.40(0.22) 0.01(0.00)

Humanoid Locomotion. Following Zhou et al. [74], we train
a population of size 4. We assess diversity by the pairwise
distance of joint torques, a widely used behavior descriptor
in recent Quality-Diversity works [67]. Torque states are not
included as the input of diversity measures and we only use
them for evaluation to ensure a fair comparison. Results are
shown in Table 3. We can see that both variants of SIPO
can outperform all baseline methods except that SIPO-RBF
achieves comparable performance with RSPO, even if RSPO
explicitly encourages the output of different actions/forces.

Table 4: State entropy estimated by k-
nearest-neighbor in SMAC. (k = 12)

2m_vs_1z 2c_vs_64zg

SIPO-RBF 0.038(0.002) 0.072(0.003)
SIPO-WD 0.036(0.001) 0.056(0.003)

RSPO 0.032(0.003) 0.070(0.001)
DIPG 0.032(0.002) 0.056(0.004)

SMERL 0.028(0.002) 0.042(0.002)
DvD 0.030(0.002) 0.057(0.003)

SMAC Following Zhou et al. [74], we run SIPO and all
baselines on an easy map, 2m_vs_1z, and a hard map,
2c_vs_64zg, both across 4 iterations. We merge all trajec-
tories produced by the policy collection and incorporate a
k-nearest-neighbor state entropy estimation [58] to assess
diversity. Intuitively, a more diverse population should
have a larger state entropy value. We set k = 12 following
Liu and Abbeel [32] and show results in Table 4. On these
maps, two agents are both involved in the attack. There-
fore, RSPO, which incorporates an action-based cross-
entropy measure, can perform well across all baselines. However, SIPO explicitly compares the
distance between resulting trajectories and can even outperform RSPO, leading to the most diverse
population.

GRF We consider three academy scenarios, specifically 3v1, counterattack (CA), and corner. The
GRF environment is more challenging than SMAC due to the large action space, more agents, and the
existence of duplicate actions. We determine a population size M = 4 by balancing resources and
wall-clock time across different baselines. Table 5 compares the number of distinct policies (in terms
of ball-passing routes, see App. B.3) discovered in the population. Due to the strong adversarial power
of our diversity measures and the application of GDA, SIPO is the most efficient and robust — even
in the challenging 11-vs-11 corner and CA scenario, SIPO can effectively discover different winning
strategies in just a few iterations across different seeds. By contrast, baselines suffer from learning
instability in these challenging environments and tend to discover policies with slight distinctions.
We also calculate the estimated state entropy as we did in SMAC. However, we find that this metric
cannot distinguish fine-grained ball-passing behaviors in GRF (check our discussions in App. B).

Remark: In GRF experiments, when M is small, even repeated training with different random seeds
(PG) is a strong baseline (see Table 5). Hence, the numbers are actually restricted in a small interval
(with a lower bound equal to PG results and an upper bound equal to M = 4), which makes the
improvements by SIPO seemingly less significant. However, achieving clear improvements in these
challenging applications remains particularly non-trivial. With a population size M = 10, SIPO
clearly outperforms baselines by consistently discovering one or more additional strategies.

6.2 Qualitative Analysis

For SMAC, we present heatmaps of agent positions in Fig. 5. The heatmaps clearly show that SIPO
can consistently learn novel winning strategies to conquer the enemy. Fig. 6 presents the learned
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Figure 5: Heatmaps of agent positions in SMAC across 4 iterations with SIPO-RBF.
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Figure 6: Learning curves and discovered strategies by SIPO-WD in the 3v1 scenario over 7 iterations.
Strategies of seed 1 are shown.

behavior by SIPO in the GRF 3v1 scenario of seed 1. We can observe that agents have learned a wide
spectrum of collaboration strategies across merely 7 iterations. The strategies discovered by SIPO
are both diverse and human-interpretable. In the first iteration, all agents are involved in the attack
such that they can distract the defender and obtain a high win rate. The 2nd and the 6th iterations
demonstrate an efficient pass-and-shoot strategy, where agents quickly elude the defender and score a
goal. In the 3rd and the 7th iterations, agents learn smart “one-two” strategies to bypass the defender,
a prevalent tactic employed by human football players. We note that NONE of the baselines have
ever discovered this strategy across all runs, while SIPO is consistently able to derive such strategies
for all random seeds. Visualization results in CA and corner scenarios can be found in App. B.

6.3 Ablation Study

We apply these changes to SIPO-WD:

• fix-L: Fixing the multiplier λi instead of applying GDA.

Table 5: Number of distinct strategies in GRF discovered by different methods in terms of
the ball-passing route. Details of the evaluation protocol can be found in App. B.3.

Population Size M
ours baselines random

SIPO-RBF SIPO-WD DIPG SMERL DvD1 RSPO PG

3v1 4 3.0 (0.8) 3.0 (0.0) 2.7 (0.5) 1.3 (0.5) 3.0 (0.8) 2.0 (0.0) 2.7 (0.5)
CA 4 3.3 (0.5) 3.0 (0.8) 2.3 (0.5) 1.3 (0.5) - 2.0 (0.0) 1.7 (0.5)

corner 4 2.7 (0.5) 3.0 (0.8) 1.7 (0.5) 1.0 (0.0) - 1.6 (0.5) 2.0 (0.8)
3v1 10 4.3 (0.5) 5.7 (0.5) 3.7 (0.5) - - 2.3 (0.5) -

1 Training DvD in CA and corner or with M = 10 requires >24GB GPU memory, which exceeds our memory limit.
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• CE: The intrinsic reward is replaced with cross-entropy, i.e., rCE
int (sh, ah) = − log π⋆

j (ah | sh), where
π⋆
j denotes a previously discovered policy. Additionally, GDA is still applied.

• filter: Optimizing the extrinsic rewards on trajectories that have intrinsic returns exceeding δ and
optimizing intrinsic rewards defined by Eq. (9) for other trajectories [74].

• PBT: Simultaneously training M policies with M(M −1)/2 constraints (i.e., directly solving Eq. (3))
with intrinsic rewards defined by Eq. (9) and GDA.

Table 6: # distinct strategies of ablations in GRF.

ours fix-L CE filter PBT

3v1 3.0 (0.0) 1.0 (0.0) 2.7 (0.5) 1.3 (0.5) 2.7 (0.5)
CA 3.0 (0.8) -1 2.3 (0.8) 1.0 (0.0) -2

corner 3.0 (0.8) -1 1.7 (0.5) 1.0 (0.0) -2

1 Not converged.
2 Training requires >24GB memory and exceeds our memory limit.

We report the number of visually
distinct policies discovered by these
methods in Table 6. Comparison be-
tween SIPO and CE demonstrates
that the action-based cross-entropy
measure may suffer from duplicate
actions in GRF and produce nearly
identical behavior by overly exploit-
ing duplicate actions, especially in
the CA and corner scenarios with 11
agents. Besides, the fixed Lagrange coefficient, the filtering-based method, and PBT are all detri-
mental to our algorithm. These methods also suffer from significant training instability. Overall, the
state-distance-based diversity measure, ITR, and GDA are all critical to the performance of SIPO.

7 Conclusion

We tackle the problem of discovering diverse high-reward policies in RL. First, we demonstrate
concrete failure cases of existing diversity measures and propose a novel measure that explicitly
compares the distance in state space. Next, we present a thorough comparison between PBT and ITR
and show that ITR is much easier to optimize and can derive solutions with comparable quality to
PBT. Motivated by these insights, we combine ITR with a state-distance-based diversity measure
to develop SIPO, which has provable convergence and can efficiently discover a wide spectrum of
human-interpretable strategies in a wide range of environments.

Limitations: First, we assume direct access to an object-centric state representation. When such
a representation is not available (e.g., image-based observations), representation learning becomes
necessary and algorithm performance can be affected by the quality of the learned representations.
Second, because ITR requires sequential training, the wall clock time of SIPO can be longer than the
PBT alternatives when fixing the total number of training samples. The acceleration of ITR remains
an open challenge.

Future Directions: Besides addressing the above limitations, we suggest three additional future
directions based on our paper. First, a consensus on the best algorithmic formulation of distinct
solutions in RL remains elusive. It is imperative to understand diversity in a more theoretical manner.
Second, while this paper focuses on single-agent and cooperative multi-agent domains, extending
SIPO to multi-agent competitive games holds great potential. Finally, although SIPO/ITR enables
open-ended training, it is worth studying how to determine the optimal population size to better
balance resources and the diversity of the resulting population.
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A Project Website

Check https://sites.google.com/view/diversity-sipo for GIF demonstrations.

B Additional Results

B.1 More Qualitative Results
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Figure 7: Visualization of learned behaviors in GRF CA across a single training trial.
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Figure 8: Visualization of learned behaviors in GRF corner.

We show additional visualization results in Fig. 7, Fig. 8, and Fig. 9. Corresponding GIF visualizations
can be found on our project website.

B.2 Task Performance Evaluation

The evaluation win rates of the demonstrated visualization results in SMAC and GRF are shown in
Table 8. Evaluated episode returns in Humanoid are shown in Table 9.

We also present the diversity score and average rewards achieved by baselines in Table 10. These
numerical values are averaged across the entire population for a clear comparison. The tabulated
data highlights the varying trade-offs between task performance and diversity exhibited by different
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Table 7: k-nearest neighbor state entropy estimation in GRF. Population size M = 4.
ours baselines

SIPO-RBF SIPO-WD DIPG SMERL1 DvD2 RSPO1 PG (random seeding)

3v1 0.009(0.000) 0.012(0.000) 0.010(0.001) 0.011(0.002) 0.010(0.000) 0.011(0.001) 0.009(0.001)
CA 0.037(0.000) 0.031(0.006) 0.036(0.002) - - 0.034(0.001) 0.039(0.001)

Corner 0.028(0.001) 0.031(0.001) 0.030(0.002) - - - 0.028(0.002)

1 The learned policy in some iterations cannot even collect a single winning trajectory, so we are unable to
compute their diversity score.

2 Training DvD in CA and corner requires >24GB GPU memory, which exceeds our memory limit.

algorithms. It is noteworthy that SIPO, in particular, displays an adeptness at training a notably more
diverse population while upholding a reasonably moderate level of task performance.

Table 8: Evaluation win rate (%) of the demonstrated visualization results in SMAC and GRF.
SMAC GRF

2m1z 2c64zg 3v1 CA corner

π1 100.0(0.0) 98.1(2.1) 92.3(6.2) 48.2(10.4) 78.2(16.2)
π2 99.6(0.9) 100.0(0.0) 82.1(8.4) 43.8(42.2) 57.0(37.7)
π3 100.0(0.0) 96.9(3.3) 90.7(1.1) 54.7(30.6) 55.7(20.8)
π4 99.6(0.6) 98.6(2.4) 63.6(45.0) 17.2(30.0) 30.7(29.0)
π5 - - 85.4(9.1) - -
π6 - - 93.2(1.9) - -
π7 - - 64.6(32.5) - -

B.3 Evaluation Metric and Protocol for Diversity

B.3.1 Humanoid

The Humanoid locomotion task is well-studied in the Quality-Diversity (QD) community, enabling
the application of well-defined behavior descriptors (BD) to assess diversity scores. While domain-
agnostic metrics like DvD scores can also be applied, we consider domain-specific BDs to be more
appropriate and accurate for evaluation in this setting.

B.3.2 SMAC

Complex multi-agent tasks like SMAC lack well-defined BDs. Hence, domain-agnostic diversity
measures such as the state-entropy measure should be applied. Moreover, different SMAC winning
strategies tend to visit different areas of the map, which can be usually captured by the state-entropy
measure.

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Figure 9: Visualization of learned behaviors in Humanoid.
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Table 9: Episode returns in Humanoid.
SIPO-RBF SIPO-WD SIPO-WD (visual)

π1 4863.9(970.3) 3909.4(533.4) 4761.3(107.8)
π2 3746.5(488.0) 3784.2(481.2) 4349.3(169.0)
π3 3092.0(805.0) 3770.4(674.4) 4724.3(946.5)
π4 2332.8(519.8) 3589.6(387.4) 3819.7(588.7)

Table 10: Reward/diversity of all baselines. The reward metric in SMAC and GRF are evaluation
win rate (%). The evaluation metrics of diversity used in humanoid, SMAC, GRF are the joint
torque distance, state entropy (1e-3), and the number of different ball-passing routes, respectively.
It is noteworthy that SIPO, in particular, displays an adeptness at training a notably more diverse
population while upholding a reasonably moderate level of task performance.

Task/Scenario SIPO-RBF SIPO-WD DIPG RSPO SMERL DvD PPO

humanoid 3508 / 0.53 3763 / 0.71 5191 / 0.12 1455 / 0.53 4253 / 0.01 4498 / 0.40 5299 / -
SMAC 2m1z 100 / 38 100 / 36 100 / 32 100 / 32 100 / 28 100 / 30 100 / -

SMAC 2c64zg 99 / 72 93 / 56 99 / 70 85 / 56 100 / 42 100 / 57 100 / -
GRF 3v1 (first 4) 93 / 3.0 82 / 3.0 93 / 2.7 94 / 2.0 91 / 1.3 83 / 3.0 92 / 2.7

GRF CA 70 / 3.3 41 / 3.0 46 / 2.3 76 / 2.0 45 / 1.3 - 50 / 1.7
GRF Corner 72 / 2.7 56 / 3.0 75 / 1.7 23 / 1.6 67 / 1.0 - 71 / 2.0

B.3.3 GRF

In our initial study of the GRF task, diversity was evaluated using the k-nearest-neighbor state entropy
estimation as in SMAC (see Table 7). However, we observed a significant difference between the
computed scores and visualized behaviors. Further investigation revealed that state entropy can
sometimes report fake diversity in GRF. For example, the ball-moving route is highly fine-grained
between nearby players in the counter-attack (CA) scenario, and additional passes may not change
the state entropy significantly. Instead, agents’ positions play a crucial role in this scenario, where
different shooting positions can introduce substantial state variance and lead to a higher entropy score.
As an example, readers can refer to the replays of SIPO-RBF (4 iterations of seed 2) and PG (seed 2,
1002, 2002, and 3002), where SIPO-RBF discovers four distinct passing strategies, while PG keeps
passing the ball to the same player. Nevertheless, the state entropy of PG (0.0397) is higher than that
of SIPO-RBF (0.0378).

Hence, we counted the number of distinct policies according to their ball-passing routes, such as
passing the ball to different players or shooting with different players, to evaluate diversity in GRF.
To quantify these differences, we extracted the positions of the ball and the players in the field and
calculated the nearest ally player ID to the ball across a winning episode. We then removed timesteps
where the nearest distance was above a pre-defined threshold of 0.03. Typically, these timesteps
correspond to instances when the ball is being transferred among players, making the nearest player
ID irrelevant. Next, we removed consecutive duplicate player IDs from the resulting sequence to
obtain a concise and informative embedding of the ball passing route. By comparing the lengths of
their respective embeddings and verifying that the player IDs in each embedding are identical, we
determined whether the two policies exhibit similar behavior.

We acknowledge that existing diversity measures may not be applicable in GRF, and hence we
opted for this novel approach to evaluate diversity. Additionally, we experimented with using raw
observations, which include ball ownership information provided by the game engine, but found it to
be highly inaccurate based on our visualization.

B.4 Additional Ablation Studies

B.4.1 Input to the Diversity Measure

Vectorized States in Google Research Football We perform an additional ablation study over the
input of our diversity measure in GRF 3v1 scenario with SIPO-WD. We consider the following kinds
of state input besides the default state input we adopted in Sec. 6:
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• full observation (named full, 115 dims);

• default state input with random noises of the same dimension (named random, 36 dims).

The numbers of visually distinct strategies are listed in Table 11. The performance of full and random
is similarly good. The result implies that the learnable discriminator can automatically filter out
irrelevant states to some extent, and that SIPO-WD performs relatively robust w.r.t. different state
input of the diversity measure.

Table 11: State input ablation. The table shows the number of distinct strategies in GRF 3v1.
SIPO-WD full random

3v1 3.0 (0.0) 3.0 (0.8) 3.0 (0.0)

RGB Images in Locomotion Tasks We run SIPO-WD in the visual Humanoid task based on Isaac
Gym [42]. The training protocol is similar to the state-only version (i.e., the input of policy and
intrinsic rewards are both locomotion states of the Humanoid) except that we stack recent 4 RGB
camera observations (84× 84) as the input of intrinsic rewards in Eq. 9. We adopt the training code
developed in Isaac Gym and the default PPO configuration. The backbone of the discriminator is
composed of 4 convolutional layers with kernel size 3, stride 2, padding 1, and [16, 32, 32, 32]
channels. Then the feature is passed to an MLP with 1 hidden layer and 256 hidden units. The
activation function is leaky ReLU with slope 0.2. We also compute the pairwise distance of joint
torques as in the state-only version and show the result in Table 12. Visualizations are shown in
Fig. 10. SIPO-WD can also learn meaningful diverse behaviors with RGB images as the state input
thanks to the learnable Wasserstein discriminator. This implies that our algorithm can be naturally
extended to high-dimensional states and incorporated with advances in representation learning, which
may be a potential future direction.

B.4.2 Combining State- and Action-based Diversity Measures

Based on SIPO-RBF, we introduce additional action information by directly concatenating the global
state, used for diversity calculation, with the one-hot encoded actions of all agents within the GRF
domain. Table 13 presents the outcomes, indicating the number of policies obtained. For scenarios
with a limited number of agents, the action-augmented variant demonstrates comparable performance.
However, when the agent count increases (as evident in the 11-agent cases of CA and corner), the
incorporation of actions can introduce misleading diversity, detracting from the authenticity of the
outcomes.

B.5 How to Adjust Constraint-Related Hyperparameters

Three hyperparameters are essential in the implementation of the intrinsic reward rint: the threshold
δ, the intrinsic reward scale factor α, and the variance factor σ in rRBF

int . These parameters differ under
different domains and must be adjusted individually. We find proper parameters by running two

(a)  normal running (b) left-leg jumping

(c)  right-leg jumping (d) hand-balanced mincing

Figure 10: Results of SIPO-WD in the visual Humanoid task.
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Table 12: Pairwise distance of joint torques (i.e., diversity score) in Humanoid with visual input.
Results in visual experiments are averaged over 3 seeds.

SIPO-WD (visual) SIPO-WD RSPO (best baseline)

0.62 (0.26) 0.71 (0.23) 0.53 (0.05)

3v1 CA Corner
SIPO-RBF 3.0 (0.8) 3.3 (0.5) 2.7 (0.5)

SIPO-RBF w. Action 3.0 (0.0) 2.3 (0.5) 1.0 (0.0)
Table 13: Ablation study of combining state- and -action-based diversity measures. The number of
different strategies across a population of 4 is shown with standard deviation in the brackets.

iterations without constraints and get two similar policies π0 and π1. We record rint during training
π1 and the trend is shown in Fig. 11. Not surprisingly, rint gradually decreases as training proceeds.

Threshold We set δ = c1DS(π0, π1). We try several different c1 ∈ {1, 1.2, 1.4, 1.6, 1.8, 2.0} and
find that c1 = 1.2 or 1.4 are universal proper solutions for all the experimental environments.

Intrinsic Scale Factor We need to balance the intrinsic reward rint and the original reward J so
that neither of the two rewards can dominate the training process. Empirically, the maximums of
the two rewards should be in the same order of magnitude. i.e., maxπ J(π) = α× c2λmaxδ, where
c2 = O(1). When c2 is too large, the new-trained policy πj will oscillate near the boundary of
D(πi, πj) = δ for some pre-trained policy pi. Conversely, when c2 is too small, the intrinsic reward
rint cannot yield diverse strategies. In experiments, we set c2 = 1.0.

Variance Factor We sweep the variance factor across {1e− 3, 5e− 3, 1e− 2, 2e− 2, 1e− 3} by
training π1 and observe the trend of intrinsic rewards. We find the steepest trend and select the
corresponding σ. Empirically, we find that our algorithm performs robustly well when σ2 = 0.02.

The δ and α of GRF and SMAC are listed in Table 14.

B.6 Computation of Action-Based Measures in the Grid-World Example

We consider the policies illustrated in Fig. 12. These policies are all optimal since these actions only
include “right” and “down” and actions on non-visited states can be arbitrary. We only mark actions
on states visited by any of these 3 policies and actions on other states can be considered the same.

B.6.1 Action-Distribution-Based Measures

Action-distribution-based diversity measures can be defined as

DA(πi, πj) = Es∼q(s)

[
D̃ (πi(· | s)∥πj(· | s))

]
, (10)

where D̃(·, ·) : △×△→ R is a measure over action distributions and q : △(S) is a state distribution.
Here, we consider q to be the joint state distribution visited by πi and πj .

Figure 11: Average intrinsic re-
ward during training π1.

Table 14: The values of δ and α in different environments.

football smac

3v1 corner CA 2m_vs_1z 2c_vs_64zg

δWD 0.004 0.01 0.012 0.02 0.2
αWD 1 1 0.5 0.5 0.05
δRBF 0.03 0.01 0.015 0.002 0.001
αRBF 0.001 0.001 0.001 0.001 0.001
σ2 0.02 0.02 0.02 0.02 0.02
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KL Divergence KL divergence is defined by

DKL (πi(· | s), πj(· | s)) =
∫
A
πi(a | s) log

πi(a | s)
πj(a | s)

da.

When πj(a | s) = 0 at any state s, KL divergence is +∞. Since the trajectories of these policies
have disjoint states, DKL

A (π1, π2) = DKL
A (π1, π3) = +∞. Similar results can be obtained for

cross-entropy.

JSDγ JSDγ was defined in [38] and we consider two special cases when γ = 0 and γ = 1.

As illustrated by [38], JSD0 measures the expected number of times two policies will “disagree”
by selecting different actions. On trajectories induced by π1 and π2, there are 4 + 4 states that π1

disagrees with π2 (π1 and π2 are symmetric) and DJSD0

A (π1, π2) = 8/16 = 1/2. Similarly, π1 and
π3 only disagree at the initial state, therefore we have DJSD0

A (π1, π3) = 2/16 = 1/8.

JSD1 is defined by

JSD1(πi, πj) =−
1

2

∑
τi

P (τi | πi)

T∑
t=1

1

T
log

πi(τi) + πj(τi)

2πi(τi)

− 1

2

∑
τj

P (τj | πj)

T∑
t=1

1

T
log

πi(τj) + πj(τj)

2πj(τj)
.

Since each of the policies considered only induces a single trajectory and πi(τj) = 0 (i ̸= j), we can
easily compute

DJSD1

A (π1, π2) = DJSD1

A (π1, π3) = log 2

Wasserstein Distance Wasserstein distance or Earth Moving Distance (EMD) is 1 if two policies
disagree on a state and 0 otherwise. Therefore, it equals to DJSD0

A .

B.6.2 Action Norm

We embed the action “right” as vector [1, 0] since it increases the x-coordinate by 1 and the action
“down” as vector [0,−1] since it decreases the y-coordinate by 1. This embedding can be naturally
extended to a continuous action space with velocity actions. Following [52], we compute the action
norm over a uniform distribution on states. We can see that there are 7 states where π1 and π2 perform
differently and 1 state (the initial state) where π1 and π3 perform differently. Therefore, we can get
D(π1, π2) =

√
7 and D(π1, π3) = 1.

B.6.3 State-Distance-Based Measures

State L2 Norm Similar to action L2 norm, we concatenate the coordinates instead of actions as the
embedding and compute the L2 norm between embedding.

Figure 12: Policies in the grid-world example when NG = 5.
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Wasserstein Distance Wasserstein distance is tractable in the grid-world example. We consider
7 states (except the initial and final states) in each trajectory and compute the pair-wise distance as
matrix C. Then we solve the following linear programming

min
γ

∑
i,j

γ ⊙ C

s.t. γ1 = a, γT1 = b

γi,j ≥ 0

where ⊙ means element-wise multiplication, 1 is a all-one vector, a = [1T ,0T ]T and b = [0T ,1T ]T

is the marginal state distribution of each policy.

C Environment Details

C.1 Details of the 2D Navigation Environment

The navigation environment has an agent circle with size a and 4 landmark circles with size b. We
pre-specify a threshold c and constrain that the distance of final states reaching different landmarks
must be larger than c. Correspondingly, landmark circles are randomly initialized by constraining the
pairwise distance between centers to be larger than a threshold c+ 2(a+ b) such that the final-state
constraint is valid. An episode ends if the agent touches any landmarks, i.e., the distance between the
center of the agent and the center of the landmark d < a+ b, or 1000 timesteps have elapsed. The
observation space includes the positions of the agent and all landmarks, which is a 10-dimensional
vector. The action space is a 2-dimensional vector, which is the agent velocity. The time interval is
set to be ∆t = 0.1, i.e., the next position is computed by xt+1 = xt +∆t · v. The reward is 1 if the
agent touches the landmark and 0 otherwise.

C.2 Details of Environments

We provide training configurations and environment introductions below and refer readers to our
project website in App. A for visualizations of these environments.

Humanoid We use the Humanoid environment in IsaacGym [42] with default observation and
action spaces. The input of intrinsic rewards or diversity measure is the observation without all torque
states.

SMAC We adopt the SMAC environment in the MAPPO codebase2 with the same configuration
as Yu et al. [69]. The input of intrinsic rewards or diversity measure is the state of all allies, including
positions, health, etc.

On the “easy” map 2m_vs_1z, two marines must be controlled to defeat a Zealot. The marines can
attack from a distance, while the Zealot’s attacks are limited to close range. A successful strategy
involves alternating the marines’ attacks to distract the Zealot. On the “hard” map 2c_vs_64zg, two
colossi must be controlled by the agents to fight against 64 zergs. The colossi have a wider attack
range and can move over cliffs. Strategies on this map may include hit-and-run tactics, waiting in
corners, or dividing and conquering enemies. The level of difficulty is determined by the learning
performance of existing MARL algorithms. Harder maps require more exploration and training steps.

GRF We adopt the “simple115v2” representation as observation with both “scoring” and “check-
point” reward. The reward is shared across all agents. The input of intrinsic rewards or diversity
measure is the position and velocity of all attackers and the ball. All policies are trained to control
the left team to score against built-in bots.

academy_3_vs_1_with_keeper: In this scenario, a team of three players (left) tries to score a goal
against a single defender and a goalkeeper. The left team starts with the ball and has to dribble past
the defender and the goalkeeper to score a goal.

2https://github.com/marlbenchmark/on-policy
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Table 15: Hyperparameters in the 2D navigation environment.
discount GAE λ PPO epochs clip parameter entropy bonus λmax actor lr critic lr Lagrange lr batch size

0.997 0.95 10 0.2 0 10 3e-4 1e-3 0.5 4000

Table 16: Common hyperparameters for SIPO, baselines, and ablations.
discount GAE λ actor lr critic lr clip parameter entropy bonus GRF batch size SMAC batch size

0.99 0.95 5e-4 1e-3 0.2 0.01 9600 3200

academy_counterattack_easy: In this scenario, the left team starts with the ball in the front yard and
tries to score a goal against several defenders. All eleven players in the left players can be controlled.

academy_corner: In this scenario, the left team tries to score a goal from a corner kick. The right
team defends the goal and tries to prevent the left team from scoring. All eleven players in the left
players can be controlled.

D Implementation Details

D.1 2D Navigation

We apply PPO with Lagrange multipliers to optimize the policy and hyperparameters are summarized
in Table 15. D(πi, πj) is simply taken as the L2 distance of the final state reached by πi and πj , i.e.,
D(πi, πj) = ∥sπi

H − s
πj

H ∥2. The applied algorithm is the same as SIPO (see Appendix G) except that
the intrinsic reward is only computed at the last timestep.

D.2 SIPO

In the i-th iteration (1 ≤ i ≤ M ), we learn an actor and a critic with i separate value heads to
accurately predict different return terms, including i− 1 intrinsic returns for the diversity constraints
and the environment reward. We include all practical tricks mentioned in [69] because we find
them all critical to algorithm performance. We use separate actor and critic networks, both with
hidden size 64 and a GRU layer with hidden size 64. The common hyperparameters for SIPO,
baselines, and ablations are listed in Table 16. Other environment-specific parameters, such as PPO
epochs and mini-batch size, are all the same as [69]. Besides, Table 14 and Table 17 lists some extra
hyperparameters for SIPO.

D.3 Baselines

We re-implement all baselines with PPO based on the MAPPO [69] project. All algorithms run for
the same number of environment frames. Specific hyperparameters for baselines can be found in
Appendix D.3.

SMERL SMERL trains a latent-conditioned policy that can robustly adapt to new scenarios. It
promotes diversity by maximizing the mutual information between states and the latent variable.
We implement SMERL with PPO, where the actor and the critic take as the input the concatenation
of observation and a one-hot latent variable. The discriminator is a 2-layer feed-forward network
with 64 hidden units. The learning rate of the discriminator is the same as the learning rate of
the critic network. The input of the discriminator is the same as the input we use for SIPO-WD.
The critic has 2 value heads for an accurate estimation of intrinsic return. Since SMERL trains a

Table 17: SIPO hyperparameters across all
environments.
λmax Discriminator lr Lagrangian lr

10 4.0e-4 0.1

24



single latent-conditioned policy, we train SMERL for M× more environment steps, such that total
environment frames are the same. The scaling factor of intrinsic rewards is 0.1 and the threshold
for diversification is [0.81, 0.45, 0.72] (0.9× [0.9, 0.5, 0.8]) for “3v1”, “counterattack”, and “corner”
respectively.

DvD DvD simultaneously trains a population of policies to maximize the determinant of a kernel
matrix based on action difference. We concatenate the one-hot actions along a trajectory as the
behavioral embedding. The square of the variance factor, i.e., σ2 in the RBF kernel, is set to be the
length of behavioral embedding. We also use the same Bayesian bandits as proposed in the original
paper. Training DvD in “counterattack” and “corner” exceeds the GPU memory and we exclude the
results in the main body.

DIPG DIPG iteratively maximizes the maximum mean discrepancy (MMD) distance between the
state distribution of the current policy and previously discovered policies. For DIPG, we follow the
open-source implementation3. We set the same variance factor in the RBF kernel as SIPO-RBF and
apply the same state as the input of the RBF kernel. We sweep the coefficient of MMD loss among
{0.1, 0.5, 0.9} and find 0.1 the most appropriate (larger value will cause training instability). We use
the same method to save archived trajectories as SIPO and the input of the RBF kernel is the same as
the input we use for SIPO-RBF. To improve training efficiency, we only back-propagate the MMD
loss at the first PPO epoch.

RSPO RSPO iteratively discovers diverse policies by optimizing extrinsic rewards on novel tra-
jectories while optimizing diversity on other trajectories. The diversity measure is defined as the
action-cross entropy along the trajectory. For RSPO, we follow the opensource implementation4

and use the same hyperparameters on the SMAC 2c_vs_64zg map in the original paper for GRF
experiments.

TrajDi TrajDi was originally designed for cooperation in multi-agent domains to facilitate zero-
shot coordination. It defines a generalized Jensen-Shanon divergence objective between policy
action distributions. Then this objective and rewards are simultaneously optimized via population-
based training. We tried TrajDi in SMAC and GRF. We sweep the action discount factor among
{0.1, 0.5, 0.9} and the coefficient of TrajDi loss among {0.1, 0.01, 0.001}. However, TrajDi fails to
converge in the “3v1” scenario and exceeds the GPU memory in the “counterattack” and “corner”
scenarios. Therefore, we exclude the performance of TrajDi in the main body.

Domino We have meticulously re-implemented Domino within our codebase according to the
appendix of Zahavy et al. [71]. We execute the algorithm in the Humanoid locomotion task, employing
the robot state (excluding torques) for successor feature computation. Despite our earnest efforts
to optimize Domino’s performance, our findings reveal its comparable performance to SMERL,
illustrated by a minimal diversity score of 0.01. Therefore, we exclude the performance of Domino in
the main body.

APT APT maximized the nearest neighbor state-entropy estimation for skill discovery. While we
also adopted this metric for diversity evaluation, there is a fundamental distinction in formulation.
APT optimizes state entropy within a single policy, whereas our method, SIPO, targets the joint
entropy of a population of policies. It is okay for each single policy within the population to have
low state entropy. To employ APT’s objective of discovering diverse policies, training a population
of agents concurrently is required. The algorithm should optimize the estimated entropy over states
visited by all policies. Yet, this approach mandates large-scale k-NN computation (k=12) over
substantial batches, leading to significant computational inefficiency. Despite our dedicated efforts,
we didn’t finish a single training trial of APT within 48 hours (in contrast to other PBT baselines, e.g.
DvD, which completes training in less than 8 hours).

D.4 Ablation Study Details

For the three ablation studies: fix-L, CE, and filter, we list the specific hyperparameters here:

3https://github.com/dtak/DIPG-public
4https://github.com/footoredo/rspo-iclr-2022
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• fix-L: we set the Lagrange multiplier to be 0.2;
• CE: the threshold is 3.800 and the intrinsic reward scale factor is 1/1000 of that in the WD

setting;
• filter: all the hyperparameters in the setting are the same as those in the WD setting.

E Proofs

E.1 Proof of theorem 4.1

Theorem 4.1. Assume D is a distance metric. Denote the optimal value of Problem 3 as T1. Let
T2 =

∑M
i=1 J(π̃i) where

π̃i = argmax
πi

J(πi)

s.t. D(πi, π̃j) ≥ δ/2, ∀1 ≤ j < i
(3)

for i = 1, . . . ,M , then T2 ≥ T1.

Proof. Suppose the optimal solution of Problem 3 is π1, π2, ..., πM satisfying J(π1) ≥ J(π2) ≥
... ≥ J(πM ) and the optimal solution of Problem 6 is π̃1, π̃2, ..., π̃M satisfying J(π̃1) ≥ J(π̃2) ≥
... ≥ J(π̃M ).

Assume the contrary that Thm. 4.1 is not true, which means
∑M

i=1 J(πi) = T1 > T2 =
∑M

i=1 J(π̃i).
Then we choose the smallest number N ≤M that satisfies

N∑
i=1

J(πi) >

N∑
i=1

J(π̃i).

By T1 > T2 we know that N exists. In addition, because Problem 6 solves unconstrained RL in the
first iteration, we know that π̃1 = argmaxπ J(π) and then J(π1) ≤ J(π̃1). Therefore, N ≥ 2.

Suppose J(πN ) ≤ J(π̃N ). Then we have

N−1∑
i=1

J(πi) >

N−1∑
i=1

J(π̃i).

Contradicting the fact that N is the smallest number satisfies that equation.

Hence, we know that J(πN ) > J(π̃N ). Then

J(π1) ≥ J(π2) ≥ ... ≥ J(πN ) > J(π̃N ).

Consider the optimization problem of π̃N :

π̃N = argmax
π

J(π)

s.t. D(π, π̃j) ≥ δ/2, ∀1 ≤ j < N.

This optimization does not find {π1, . . . , πN} but find π̃N , which means that for each πi, 1 ≤ i ≤ N ,
there exists 1 ≤ ji < N such that D(πi, π̃ji) < δ/2. Otherwise, we will get the solution of the above
problem as πi instead of π̃N .

By the Pigeonhole Principle, we know that there exist two indexes i1 ∈ [N ] and i2 ∈ [N ] (i1 ̸= i2)

such that ji1 = ji2 = ĵ. Then we have

D(πi1 , πi2) ≤ D(πi1 , π̃ĵ) +D(πi2 , π̃ĵ) < δ/2 + δ/2 = δ,

where the inequality follows by the triangle inequality of the distance function.

It contradict with the fact that D(πi1 , πi2) ≥ δ in Problem 3.

Therefore, we prove the theorem
∑M

i=1 J(πi) = T1 ≤ T2 =
∑M

i=1 J(π̃i).

26



E.2 Proof of Theorem 5.1

In this section, we consider the i-th iteration of SIPO illustrated in Eq. (4). For the sake of simplicity,
we use a ≤ λ ≤ b for vector λ to denote each component of λ satisfies a ≤ λi ≤ b, where a, b ∈ R.
We use π to denote the policy we are optimizing, and πj (1 ≤ j < i) to denote a previously obtained
policy. We denote the Lagrange function as L(π,λ) = −J(π)−

∑i−1
j=1 λj (D(π, πj)− δ).

To prove Theorem 5.1, we consider the following two optimization problems:

(πi,λ
⋆) = argmin

π
max
λ≥0

L(π,λ) (11)

and
(π̃i, λ̃

⋆) = argmin
π

max
0≤λ≤Λ

L(π,λ), (12)

where Λ = 1
ϵ0

and ϵ0 > 0 is sufficiently small.

We make the following assumptions to prove this theorem:
Assumption E.1. 0 ≤ J(·) ≤ 1.
Assumption E.2. ∀λ ≥ 0, L(·,λ) is l-smooth and ζ-Lipschitz.

We may notice that solving the optimization problem (11) is hard because its domain is unbounded.
Therefore, we make some approximations and consider the bounded optimization problem (12). First,
we prove the following lemma about the value function J :
Lemma E.3. J(πi) ≤ J(π̃i).

Proof. As the domain of λ in Eq. 12 is smaller than Eq. (11), we have L(πi,λ) ≥ L(π̃i, λ̃).

By the fundamental property of Lagrange duality, we know that L achieves its optimal value when
λ = 0 and the optimal value is −J(πi).

By the optimality of (π̃i, λ̃
⋆), we know that

−
i−1∑
j=1

λ̃⋆
j (D(π̃i, πj)− δ) ≥ 0. (13)

Then we have

−J(πi) = L(πi,λ
⋆) ≥ L̃(π̃i, λ̃

⋆) = −J(π̃i)−
i−1∑
j=1

λ̃⋆
j (D(π̃i, πj)− δ) ≥ −J(π̃i).

Then we prove the distance between optimal policy π̃i in problem (12) and optimal policy πi in
problem (11) is very small:
Lemma E.4. Under Assumption E.1, D(π̃i, πj) ≥ δ − ϵ0, ∀1 ≤ j < i.

Proof. We prove this by contradiction.

Suppose there exists 1 ≤ j0 < i, D(π̃i, πj0) < δ − ϵ0. Then we choose λ̂ such that

λ̂j =

{
Λ j = j0 ,

0 1 ≤ j < i, j ̸= j0 .

By the Assumption E.1, Eq. (13), and Λ = 1
ϵ0

, we have

0 ≥ −J(πi) = L(πi,λ
⋆) ≥ L(π̃i, λ̃

⋆) ≥ L(π̃i, λ̂) ≥ −1− Λ(D(π̃i, πj0)− δ) > 0.

That is a contradiction. So we have proved that

D(π̃i, πj) ≥ δ − ϵ0, ∀1 ≤ j < i.
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From the deduction above, we get the following approximation lemma:
Lemma E.5. Denote the optimal solution of Eq. 11 and Eq. 12 as (πi, λ) and (π̃i, λ̃) respectively.
Then we have the following approximation about the optimal value and distance:

J(πi) ≤ J(π̃i)

D(π̃i, πj) ≥ δ − ϵ0, ∀1 ≤ j < i

Proof. This lemma follows directly by Lemma E.3 and Lemma E.4.

Therefore, it is reasonable to consider the constrained optimization problem (12) instead of primal
problem (11) because we have proved that the optimal value doesn’t get smaller and the distance of
policy is ϵ0-approximation of the primal problem. Finally we use the conclusion in the paper [31] to
analysis the convergence of problem (12):
Lemma E.6. ([31], Theorem 4.8) Under Assumption E.2, solving Eq. (12) via two-timescale GDA
with learning rate ηπ = Θ(ϵ4/l3ζ2Λ2) and ηλ = Θ(1/l) requires

O
(
l3ζ2Λ2C1

ϵ6
+

l3Λ2C2

ϵ4

)
iterations to converge to an ϵ-stationary point π⋆

i , where C1 and C2 are the constants that depend on
the distance between the initial point and the optimal point.

Theorem 5.1. Under assumptions E.1 and E.2 and learning rate with learning rate ηπ =
Θ(ϵ4/l3ζ2Λ2) and ηλ = Θ(1/l), SIPO converges to an ϵ-stationary point with convergence rate

O
(

l3ζ2Λ2C1

ϵ6 + l3Λ2C2

ϵ4

)
.

Proof. We consider the following constraint nonconvex-concave optimization:
min
π

max
0≤λ≤Λ

L(π,λ) . (14)

Following Lemma E.6, we know that the Two-Timescale GDA algorithm converges to an ϵ-stationary
point π∗

i .

From the above deduction, the Two-Timescale GDA algorithm requires O
(

l3ζ2Λ2C1

ϵ6 + l3Λ2C2

ϵ4

)
iterations with learning rate ηπ = Θ(ϵ4/l3ζ2Λ2) and ηλ = Θ(1/l) to converge to an ϵ-stationary
point with convergence rate.

F Discussion

F.1 The Failure Case of State-Distance-Based Diversity Measures

A failure case of state-distance-based diversity measures may be when the state space includes
many irrelevant features. These features cannot reflect behavioral differences. If we run SIPO
in such an environment, the learned strategies may be only diverse w.r.t these features and have
little visual distinction. Like the famous noisy TV problem [5], the issue of irrelevant features is
intrinsically challenging for general RL applications, which cannot be resolved by using action-based
or state-occupancy-based diversity measures either.

Thanks to the advantages we discussed in the paper, we generally find that state-distance-based
measures can be preferred in challenging RL problems. Meanwhile, since the state dimension can be
much higher than actions, it is possible that RL optimization over states may be accordingly more
difficult than actions. In practice, we can design a feature selector for those most relevant features
for visual diversity and run diversity learning over the filtered features. In SMAC and GRF, we
utilize the agent features (excluding enemies) as the input of diversity constraint without further
modifications, as discussed in Appendix D. We remark that even after filtering, the agent features
remain high-dimensional while our algorithm still works well. Note that using a feature selector is
a common practice in many existing domains, such as novelty search [12], exploration [33], and
curriculum learning [7]. There are also works studying how to extract useful low-dimensional features
from observations [68, 18], which are orthogonal to our focus.
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F.2 The Distance Metric

In Sec. 5, we adopt the two most popular implementations in the machine learning literature, i.e.,
RBF kernel and Wasserstein distance, while it is totally fine to adopt alternative implementations.
For example, we can learn state representations (e.g. auto-encoder, Laplacian, or successor feature)
and utilize pair-wise distance or norms as a diversity measure. Similar topics have been extensively
discussed in the exploration literature [68, 41]. We leave them as our future directions.

G Pseudocode of SIPO

The pseudocode of SIPO is shown in Algorithm 1.

Algorithm 1 SIPO (red for SIPO-RBF and blue for SIPO-WD)

Input: Number of Iterations M , Number of Training Steps within Each Iteration T .
Hyperparameter: Learning Rate ηπ, Diversity Threshold δ, Intrinsic Scale Factor α, Lagrange

Multiplier Upperbound λmax, Lagrange Learning rate ηλ, Wasserstein Critic Learning Rate ηW ,
RBF Kernel Variance σ.

1: Archived trajectories X ← ∅ // to store states visited by previous policies
2: for iteration i = 1, . . . ,M do
3: Initialize policy πθi // initialization
4: Initialize Wasserstein critic fϕi

5: for archive index j = 1, . . . , i− 1 do
6: Lagrange multiplier λj ← 0
7: end for
8: for Training step t = 1, . . . , T do
9: Collect trajectory τ = {(sh,ah, r(sh,ah))}Hh=1

10: for archive index j = 1, . . . , i− 1 do
11: Rj

int ← 0
12: end for
13: for timestep h = 1, . . . ,H do
14: rint,h ← 0 // compute intrinsic reward
15: for archive trajectory χj ∈ X do
16: rjint,h ← −

1
H|χj |

∑
s′∈χj

exp
(
−∥sh−s′∥2

2σ2

)
17: rjint,h ←

1
H

[
fϕj (sh)− 1

|χj |
∑

s′∈χj
fϕj

(s′)
]

18: rint,h ← rint,h + λj · rjint,h

19: Rj
int ← Rj

int,h + rjint,h
20: end for
21: rh ← r(sh,ah) + α · rint,h
22: end for
23: for archive index j = 1, . . . , i− 1 do
24: λj ← clip

(
λj + ηλ

(
−Rj

int + δ
)
, 0, λmax

)
// gradient ascent on λj

25: ϕj ← ϕj + ηW
1
H

∑H
h=1∇ϕj

(
fϕj (sh)− 1

|χj |
∑

s′∈χj
fϕj (s

′)
)

26: ϕj ← clip(ϕj ,−0.01, 0.01)
27: end for
28: Update πθi with {(sh,ah, rh)} by PPO algorithm // policy gradient on θi
29: end for
30: Collect many trajectories χi // collect trajectories to approximate dπθi

31: X ← X ∪ {χi} // for the use of following iterations
32: end for
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